論文の概要: FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
- arxiv url: http://arxiv.org/abs/2410.22057v1
- Date: Tue, 29 Oct 2024 14:08:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:39:29.321450
- Title: FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
- Title(参考訳): FANCL:脳転移セグメンテーションのためのカリキュラム学習による特徴ガイド型注意ネットワーク
- Authors: Zijiang Liu, Xiaoyu Liu, Linhao Qu, Yonghong Shi,
- Abstract要約: ディープ畳み込みニューラルネットワーク(CNN)に基づく手法は,高いセグメンテーション性能を実現している。
畳み込みとプール操作によって重要な特徴情報が失われているため、CNNは小さなBMセグメンテーションにおいて大きな課題に直面している。
本稿では,カリキュラム学習を用いた特徴誘導型注目ネットワーク(FANCL)を提案する。
- 参考スコア(独自算出の注目度): 5.922836741521003
- License:
- Abstract: Accurate segmentation of brain metastases (BMs) in MR image is crucial for the diagnosis and follow-up of patients. Methods based on deep convolutional neural networks (CNNs) have achieved high segmentation performance. However, due to the loss of critical feature information caused by convolutional and pooling operations, CNNs still face great challenges in small BMs segmentation. Besides, BMs are irregular and easily confused with healthy tissues, which makes it difficult for the model to effectively learn tumor structure during training. To address these issues, this paper proposes a novel model called feature-guided attention network with curriculum learning (FANCL). Based on CNNs, FANCL utilizes the input image and its feature to establish the intrinsic connections between metastases of different sizes, which can effectively compensate for the loss of high-level feature from small tumors with the information of large tumors. Furthermore, FANCL applies the voxel-level curriculum learning strategy to help the model gradually learn the structure and details of BMs. And baseline models of varying depths are employed as curriculum-mining networks for organizing the curriculum progression. The evaluation results on the BraTS-METS 2023 dataset indicate that FANCL significantly improves the segmentation performance, confirming the effectiveness of our method.
- Abstract(参考訳): MR画像における脳転移の正確なセグメンテーションは、患者の診断と追跡に不可欠である。
ディープ畳み込みニューラルネットワーク(CNN)に基づく手法は,高いセグメンテーション性能を実現している。
しかし、畳み込みとプール操作による重要な特徴情報の喪失により、CNNは小さなBMセグメンテーションにおいて大きな課題に直面している。
さらに、BMは正常な組織と容易に混同されるため、モデルがトレーニング中に腫瘍構造を効果的に学習することは困難である。
これらの課題に対処するため,本稿では,FANCL(Feature-Guided attention network)と呼ばれるカリキュラム学習モデルを提案する。
CNNに基づいて、FANCLは入力画像とその特徴を利用して、異なる大きさの転移組織間の本質的な接続を確立する。
さらに、FANCLは、モデルがBMの構造と詳細を徐々に学習するのを助けるために、ボクセルレベルのカリキュラム学習戦略を適用している。
また、カリキュラムの進行を整理するためのカリキュラムマイニングネットワークとして、様々な深さのベースラインモデルが採用されている。
BraTS-METS 2023 データセットの評価結果から,FANCL はセグメンテーション性能を著しく向上し,本手法の有効性を確認した。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentation [23.384259038420005]
3次元腫瘍分割のためのSAR(Scale-Aware Restoration)を提案する。
新たなプロキシタスク、すなわちスケール差別は、自己回復タスクと組み合わせて3Dニューラルネットワークを事前訓練するために定式化される。
脳腫瘍セグメンテーション(Brain tumor segmentation),すなわち膵腫瘍セグメンテーション(Pancreas tumor segmentation)の2つの課題に対して,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-13T01:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。