InLINE: Inner-Layer Information Exchange for Multi-task Learning on Heterogeneous Graphs
- URL: http://arxiv.org/abs/2410.22089v1
- Date: Tue, 29 Oct 2024 14:46:49 GMT
- Title: InLINE: Inner-Layer Information Exchange for Multi-task Learning on Heterogeneous Graphs
- Authors: Xinyue Feng, Jinquan Hang, Yuequn Zhang, Haotian Wang, Desheng Zhang, Guang Wang,
- Abstract summary: Heterogeneous graph is an important structure for modeling complex data in real-world scenarios.
We propose the Inner-Layer Information Exchange model that facilitate fine-grained information exchanges within each graph layer.
Our model effectively alleviates the significant performance drop on specific tasks caused by negative transfer.
- Score: 13.204120407041195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous graph is an important structure for modeling complex relational data in real-world scenarios and usually involves various node prediction tasks within a single graph. Training these tasks separately may neglect beneficial information sharing, hence a preferred way is to learn several tasks in a same model by Multi-Task Learning (MTL). However, MTL introduces the issue of negative transfer, where the training of different tasks interferes with each other as they may focus on different information from the data, resulting in suboptimal performance. To solve the issue, existing MTL methods use separate backbones for each task, then selectively exchange beneficial features through interactions among the output embeddings from each layer of different backbones, which we refer to as outer-layer exchange. However, the negative transfer in heterogeneous graphs arises not simply from the varying importance of an individual node feature across tasks, but also from the varying importance of inter-relation between two nodes across tasks. These inter-relations are entangled in the output embedding, making it difficult for existing methods to discriminate beneficial information from the embedding. To address this challenge, we propose the Inner-Layer Information Exchange (InLINE) model that facilitate fine-grained information exchanges within each graph layer rather than through output embeddings. Specifically, InLINE consists of (1) Structure Disentangled Experts for layer-wise structure disentanglement, (2) Structure Disentangled Gates for assigning disentangled information to different tasks. Evaluations on two public datasets and a large industry dataset show that our model effectively alleviates the significant performance drop on specific tasks caused by negative transfer, improving Macro F1 by 6.3% on DBLP dataset and AUC by 3.6% on the industry dataset compared to SoA methods.
Related papers
- PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving [66.42260489147617]
We introduce PLAN-TUNING, a framework that distills synthetic task decompositions from large-scale language models.<n>Plan-TUNING fine-tunes smaller models via supervised and reinforcement-learning objectives to improve complex reasoning.<n>Our analysis demonstrates how planning trajectories improves complex reasoning capabilities.
arXiv Detail & Related papers (2025-07-10T07:30:44Z) - Towards Unified Modeling in Federated Multi-Task Learning via Subspace Decoupling [23.642760378344335]
Federated Multi-Task Learning (FMTL) enables multiple clients performing heterogeneous tasks without exchanging their local data.<n>Most existing FMTL methods focus on building personalized models for each client and unable to support the aggregation of multiple heterogeneous tasks into a unified model.<n>We propose FedDEA, an update-structure-aware aggregation method specifically designed for multi-task model integration.
arXiv Detail & Related papers (2025-05-30T03:53:21Z) - OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation [65.15955645757705]
We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution.<n>During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents.<n>For training, we introduce optimized Workforce Learning (OWL), which improves generalization across domains.
arXiv Detail & Related papers (2025-05-29T17:51:58Z) - A representational framework for learning and encoding structurally enriched trajectories in complex agent environments [1.904851064759821]
The ability of artificial intelligence agents to make optimal decisions and generalise them to different domains and tasks is compromised in complex scenarios.<n>One way to address this issue has focused on learning efficient representations of the world and on how the actions of agents affect them, such as disentangled representations that exploit symmetries.<n>We propose to enrich the agent's ontology and extend the traditionalisation of trajectories to provide a more nuanced view of task execution.
arXiv Detail & Related papers (2025-03-17T14:04:27Z) - Pilot: Building the Federated Multimodal Instruction Tuning Framework [79.56362403673354]
Our framework integrates two stages of "adapter on adapter" into the connector of the vision encoder and the LLM.
In stage 1, we extract task-specific features and client-specific features from visual information.
In stage 2, we build the cross-task Mixture-of-Adapters(CT-MoA) module to perform cross-task interaction.
arXiv Detail & Related papers (2025-01-23T07:49:24Z) - Multi-Task Learning as enabler for General-Purpose AI-native RAN [1.4295558450631414]
This study explores the effectiveness of multi-task learning (MTL) approaches in facilitating a general-purpose AI native Radio Access Network (RAN)
The investigation focuses on four RAN tasks: (i) secondary carrier prediction, (ii) user location prediction, (iii) indoor link classification, and (iv) line-of-sight link classification.
We validate the performance using realistic simulations considering multi-faceted design aspects of MTL including model architecture, loss and gradient balancing strategies, distributed learning topology, data sparsity and task groupings.
arXiv Detail & Related papers (2024-04-05T21:12:25Z) - Decoupled Subgraph Federated Learning [57.588938805581044]
We address the challenge of federated learning on graph-structured data distributed across multiple clients.<n>We present a novel framework for this scenario, named FedStruct, that harnesses deep structural dependencies.<n>We validate the effectiveness of FedStruct through experimental results conducted on six datasets for semi-supervised node classification.
arXiv Detail & Related papers (2024-02-29T13:47:23Z) - Towards Robust Graph Incremental Learning on Evolving Graphs [23.595295175930335]
We focus on the inductive NGIL problem, which accounts for the evolution of graph structure (structural shift) induced by emerging tasks.
We propose a novel regularization-based technique called Structural-Shift-Risk-Mitigation (SSRM) to mitigate the impact of the structural shift on catastrophic forgetting.
arXiv Detail & Related papers (2024-02-20T13:17:37Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - Factorized Contrastive Learning: Going Beyond Multi-view Redundancy [116.25342513407173]
This paper proposes FactorCL, a new multimodal representation learning method to go beyond multi-view redundancy.
On large-scale real-world datasets, FactorCL captures both shared and unique information and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-06-08T15:17:04Z) - Curriculum Modeling the Dependence among Targets with Multi-task
Learning for Financial Marketing [26.80709680959278]
We propose a prior information merged model (textbfPIMM) for multiple sequential dependence task learning.
The PIM randomly selects the true label information or the prior task prediction with a soft sampling strategy to transfer to the downstream task during the training.
The offline experimental results on both public and product datasets verify that PIMM outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2023-04-25T07:55:16Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data.
By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning.
We propose a novel textbfSelf-textbfSupervised textbfGraph Neural Network (SSG) to enable more effective inter-task information exchange and knowledge sharing.
arXiv Detail & Related papers (2022-04-08T03:37:56Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
Learning to answer visual questions is a challenging task since the multi-modal inputs are within two feature spaces.
We propose Multi-Granularity Alignment architecture for Visual Question Answering task (MGA-VQA)
Our model splits alignment into different levels to achieve learning better correlations without needing additional data and annotations.
arXiv Detail & Related papers (2022-01-25T22:30:54Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Multi-Relational Graph based Heterogeneous Multi-Task Learning in
Community Question Answering [28.91133131424694]
We develop a multi-relational graph based Multi-Task Learning model called Heterogeneous Multi-Task Graph Isomorphism Network (HMTGIN)
In each training forward pass, HMTGIN embeds the input CQA forum graph by an extension of Graph Isomorphism Network and skip connections.
In the evaluation, the embeddings are shared among different task-specific output layers to make corresponding predictions.
arXiv Detail & Related papers (2021-09-04T03:19:20Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorld is a benchmark for causal structure and transfer learning in a robotic manipulation environment.
Tasks consist of constructing 3D shapes from a given set of blocks - inspired by how children learn to build complex structures.
arXiv Detail & Related papers (2020-10-08T23:01:13Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
We study an architecture with a shared module for all tasks and a separate output module for each task.
We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer.
Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning.
arXiv Detail & Related papers (2020-05-02T23:43:52Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.