Natural Language Processing for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review
- URL: http://arxiv.org/abs/2410.22180v1
- Date: Tue, 29 Oct 2024 16:17:07 GMT
- Title: Natural Language Processing for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review
- Authors: Muhammad Bilal, Ameer Hamza, Nadia Malik,
- Abstract summary: This review aims to analyze the application of natural language processing (NLP) techniques in cancer research using electronic health records ( EHRs) and clinical notes.
Data extraction included study characteristics, cancer types, NLP methodologies, dataset information, performance metrics, challenges, and future directions.
- Score: 1.3966247773236926
- License:
- Abstract: Objective: This review aims to analyze the application of natural language processing (NLP) techniques in cancer research using electronic health records (EHRs) and clinical notes. This review addresses gaps in the existing literature by providing a broader perspective than previous studies focused on specific cancer types or applications. Methods: A comprehensive literature search was conducted using the Scopus database, identifying 94 relevant studies published between 2019 and 2024. Data extraction included study characteristics, cancer types, NLP methodologies, dataset information, performance metrics, challenges, and future directions. Studies were categorized based on cancer types and NLP applications. Results: The results showed a growing trend in NLP applications for cancer research, with breast, lung, and colorectal cancers being the most studied. Information extraction and text classification emerged as predominant NLP tasks. A shift from rule-based to advanced machine learning techniques, particularly transformer-based models, was observed. The Dataset sizes used in existing studies varied widely. Key challenges included the limited generalizability of proposed solutions and the need for improved integration into clinical workflows. Conclusion: NLP techniques show significant potential in analyzing EHRs and clinical notes for cancer research. However, future work should focus on improving model generalizability, enhancing robustness in handling complex clinical language, and expanding applications to understudied cancer types. Integration of NLP tools into clinical practice and addressing ethical considerations remain crucial for utilizing the full potential of NLP in enhancing cancer diagnosis, treatment, and patient outcomes.
Related papers
- Large Language Models for Disease Diagnosis: A Scoping Review [29.498658795329977]
The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence.
Despite the growing attention in this field, many critical research questions remain under-explored.
This scoping review examined the types of diseases, associated organ systems, relevant clinical data, LLM techniques, and evaluation methods reported in existing studies.
arXiv Detail & Related papers (2024-08-27T02:06:45Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - An Introduction to Natural Language Processing Techniques and Framework
for Clinical Implementation in Radiation Oncology [1.2714439146420664]
We present state-of-the-art NLP applications that employ large language models (LLMs) in radiation oncology research.
LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation.
Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.
arXiv Detail & Related papers (2023-11-03T19:32:35Z) - Language Models are Few-shot Learners for Prognostic Prediction [0.4254099382808599]
We explore the use of transformers and language models in prognostic prediction for immunotherapy using real-world patients' clinical data and molecular profiles.
The study benchmarks the efficacy of baselines and language models on prognostic prediction across multiple cancer types and investigates the impact of different pretrained language models under few-shot regimes.
arXiv Detail & Related papers (2023-02-24T15:35:36Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - A Systematic Review of Natural Language Processing Applied to Radiology
Reports [3.600747505433814]
This study systematically assesses recent literature in NLP applied to radiology reports.
Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics.
arXiv Detail & Related papers (2021-02-18T18:54:41Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Artificial Intelligence, speech and language processing approaches to
monitoring Alzheimer's Disease: a systematic review [5.635607414700482]
This paper summarises current findings on the use of artificial intelligence, speech and language processing to predict cognitive decline in Alzheimer's Disease.
We conducted a systematic review of original research between 2000 and 2019 registered in PROSPERO.
arXiv Detail & Related papers (2020-10-12T21:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.