論文の概要: ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding
- arxiv url: http://arxiv.org/abs/2410.22211v1
- Date: Tue, 29 Oct 2024 16:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:55.104011
- Title: ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding
- Title(参考訳): ProMQA:マルチモーダルな手続き的活動理解のための質問応答データセット
- Authors: Kimihiro Hasegawa, Wiradee Imrattanatrai, Zhi-Qi Cheng, Masaki Asada, Susan Holm, Yuran Wang, Ken Fukuda, Teruko Mitamura,
- Abstract要約: 本稿では,アプリケーション指向シナリオにおけるシステム進歩を測定するための新しい評価データセットProMQAを提案する。
ProMQAは401のマルチモーダルプロシージャQAペアから構成され、プロシージャアクティビティのユーザ記録とそれに対応する命令が組み合わされている。
- 参考スコア(独自算出の注目度): 9.921932789361732
- License:
- Abstract: Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action segmentation. In this paper, we present a novel evaluation dataset, ProMQA, to measure system advancements in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities coupled with their corresponding instruction. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models' multimodal understanding capabilities.
- Abstract(参考訳): マルチモーダルシステムは、人が目標を達成するための指示に従う手続き的活動において、人間を支援する大きな可能性を持っている。
多様なアプリケーションシナリオにもかかわらず、システムは一般的に伝統的な分類タスク、例えばアクション認識や時間的アクションセグメンテーションに基づいて評価される。
本稿では,アプリケーション指向シナリオにおけるシステム進歩を測定するための新しい評価データセットProMQAを提案する。
ProMQAは401のマルチモーダルプロシージャQAペアから構成され、プロシージャアクティビティのユーザ記録とそれに対応する命令が組み合わされている。
QAアノテーションでは、コスト効率のよい人-LLM協調アプローチを採用し、既存のアノテーションは後に人間によって検証されるLCM生成QAペアで強化される。
次に、ベンチマーク結果を提供し、ProMQAのベースラインパフォーマンスを設定します。
我々の実験は、競争力のあるプロプライエタリなマルチモーダルモデルを含む、現在のシステムと人間のパフォーマンスの間に大きなギャップがあることを明らかにした。
データセットがモデルのマルチモーダル理解機能の新たな側面に光を当てることを願っています。
関連論文リスト
- Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorFBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorFEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することができることを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
LLM(Large Language Models)を用いたプロンプトベースの手法の開発には、多くの意思決定が必要である。
この課題に対処するための新しい手法を提案する。
典型的に必要とされるリソースの5~15%しか必要とせず,トップパフォーマンスの手法を識別できることが示される。
論文 参考訳(メタデータ) (2024-07-08T17:48:42Z) - MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning [50.45558735526665]
具体的タスクプランニングにおけるMFMの性能について,より深く,包括的に評価する。
我々は,その複雑で可変なタスクシナリオを特徴付けるMFE-ETPという新しいベンチマークを提案する。
ベンチマークと評価プラットフォームを用いて、いくつかの最先端のMFMを評価し、それらが人間レベルの性能に著しく遅れていることを発見した。
論文 参考訳(メタデータ) (2024-07-06T11:07:18Z) - Needle In A Multimodal Haystack [79.81804334634408]
本稿では,従来のMLLMの長大なマルチモーダル文書の理解能力を評価するために設計された,最初のベンチマークを示す。
我々のベンチマークには、マルチモーダル検索、カウント、推論の3種類の評価タスクが含まれている。
既存のモデルには、これらのタスク、特に視覚中心の評価において、改善の余地がまだ残っていることを観察する。
論文 参考訳(メタデータ) (2024-06-11T13:09:16Z) - User Simulation with Large Language Models for Evaluating Task-Oriented
Dialogue [10.336443286833145]
本稿では,最近開発された大規模事前学習言語モデル(LLM)を用いた新しいユーザシミュレータを提案する。
シミュレーション性能の主指標としてゴール成功率(GSR)を最大化しようとする従来の研究とは異なり,本研究の目的は,TODシステムとのヒューマンインタラクションで観測されるようなGSRを実現するシステムである。
論文 参考訳(メタデータ) (2023-09-23T02:04:57Z) - What are the best systems? New perspectives on NLP Benchmarking [10.27421161397197]
そこで本研究では,各タスクのパフォーマンスに基づいて,システムにランク付けする新しい手法を提案する。
社会的選択理論によって動機付けられ、各タスクによって誘導されるランクを集約することで最終システム順序付けが得られる。
本手法は, 平均集約法とは異なる, 最先端システム上での結論を導出することを示す。
論文 参考訳(メタデータ) (2022-02-08T11:44:20Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
視覚質問応答(VQA)のマルチモーダル設定におけるアクティブラーニングに対処する
マルチモーダルな入力,画像,質問を考慮し,有効サンプル取得のための新しい手法を提案する。
私たちの新しいアイデアは、実装が簡単で、コスト効率が高く、他のマルチモーダルタスクにも容易に適応できます。
論文 参考訳(メタデータ) (2021-10-21T05:38:45Z) - Multi-objective Asynchronous Successive Halving [10.632606255280649]
本稿では,非同期半減期 (ASHA) を多目的 (MO) 設定に拡張するアルゴリズムを提案する。
実験分析の結果,MO ASHAはMO HPOを大規模に実行可能であることがわかった。
我々のアルゴリズムは、この地域における将来の研究の新たなベースラインを確立する。
論文 参考訳(メタデータ) (2021-06-23T19:39:31Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。