論文の概要: Residual Connection Networks in Medical Image Processing: Exploration of ResUnet++ Model Driven by Human Computer Interaction
- arxiv url: http://arxiv.org/abs/2412.20709v1
- Date: Mon, 30 Dec 2024 04:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:40.594944
- Title: Residual Connection Networks in Medical Image Processing: Exploration of ResUnet++ Model Driven by Human Computer Interaction
- Title(参考訳): 医用画像処理における残留接続ネットワーク:人間のコンピュータインタラクションによるResUnet++モデルの探索
- Authors: Peixin Dai, Jingsi Zhang, Zhitao Shu,
- Abstract要約: 本稿では、ResNetとUnet++を組み合わせた高度なハイブリッドモデルであるResUnet++を紹介する。
臨床医と医用画像システムとのシームレスな相互作用を育みながら、腫瘍の検出と局所化を改善するように設計されている。
HCIの原則を取り入れることで、このモデルは直感的でリアルタイムなフィードバックを提供する。
- 参考スコア(独自算出の注目度): 0.4915744683251151
- License:
- Abstract: Accurate identification and localisation of brain tumours from medical images remain challenging due to tumour variability and structural complexity. Convolutional Neural Networks (CNNs), particularly ResNet and Unet, have made significant progress in medical image processing, offering robust capabilities for image segmentation. However, limited research has explored their integration with human-computer interaction (HCI) to enhance usability, interpretability, and clinical applicability. This paper introduces ResUnet++, an advanced hybrid model combining ResNet and Unet++, designed to improve tumour detection and localisation while fostering seamless interaction between clinicians and medical imaging systems. ResUnet++ integrates residual blocks in both the downsampling and upsampling phases, ensuring critical image features are preserved. By incorporating HCI principles, the model provides intuitive, real-time feedback, enabling clinicians to visualise and interact with tumour localisation results effectively. This fosters informed decision-making and supports workflow efficiency in clinical settings. We evaluated ResUnet++ on the LGG Segmentation Dataset, achieving a Jaccard Loss of 98.17%. The results demonstrate its strong segmentation performance and potential for real-world applications. By bridging advanced medical imaging techniques with HCI, ResUnet++ offers a foundation for developing interactive diagnostic tools, improving clinician trust, decision accuracy, and patient outcomes, and advancing the integration of AI in healthcare workflows.
- Abstract(参考訳): 医学画像からの脳腫瘍の正確な同定と局所化は、腫瘍の多様性と構造的複雑さのために依然として困難である。
畳み込みニューラルネットワーク(CNN)、特にResNetとUnetは、画像セグメンテーションの堅牢な機能を提供しながら、医療画像処理において大きな進歩を遂げている。
しかし、ユーザビリティ、解釈可能性、臨床応用性を高めるため、人間-コンピュータインタラクション(HCI)との統合について限定的な研究がなされている。
本稿では,ResNetとUnet++を組み合わせた高度なハイブリッドモデルであるResUnet++について紹介する。
ResUnet++は、ダウンサンプリングとアップサンプリングの両方のフェーズで残留ブロックを統合する。
HCIの原則を取り入れることで、このモデルは直感的でリアルタイムなフィードバックを提供する。
これにより、情報提供による意思決定が促進され、臨床現場でのワークフロー効率が向上する。
LGGセグメンテーションデータセット上でResUnet++を評価し,Jaccard損失98.17%を達成した。
その結果, 実世界のアプリケーションにおいて, セグメンテーション性能と可能性を示すことができた。
高度な医用イメージング技術をHCIにブリッジすることで、ResUnet++は、インタラクティブな診断ツールの開発、臨床医の信頼の向上、意思決定の正確性、患者の成果の改善、医療ワークフローにおけるAIの統合の促進のための基盤を提供する。
関連論文リスト
- MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
本稿では,医用画像セグメンテーションのためのU-Netフレームワークを用いて,トランスフォーマーモデルの強度を相乗化する新しいアーキテクチャMAPUNetRを紹介する。
本モデルでは,分解能保存課題に対処し,セグメンテーションされた領域に着目したアテンションマップを導入し,精度と解釈可能性を高める。
臨床実習における医用画像セグメンテーションの強力なツールとして,本モデルが安定した性能と可能性を維持していることを示す。
論文 参考訳(メタデータ) (2024-10-29T16:52:57Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
本研究は、スタックド・ホアーグラス・ネットワーク(SHGN)と統合されたコンディショナル・ジェネレーション・アドバイザリアル・ネットワーク(C-GAN)の革新的な応用を紹介する。
我々は、複雑な画像データセットに適用されるディープラーニングモデルに共通するオーバーフィッティングの問題に、回転とスケーリングを通じてデータを増大させることで対処する。
血管内超音波(IVUS)画像において,L1とL2再構成損失を併用したハイブリッド損失関数を導入する。
論文 参考訳(メタデータ) (2024-07-17T23:23:09Z) - Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness [0.41942958779358674]
提案手法は, 検索性, アクセシビリティ, インターオペラビリティ, 再利用性を向上させるために, 臨床計算断層撮影(CT)画像シリーズの統合と向上に重点を置いている。
メタデータはHL7 FHIRリソースで標準化され、研究プロジェクト間の効率的なデータ認識とデータ交換を可能にする。
この研究は、UKSH MeDIC内で堅牢なプロセスを統合することに成功し、23万以上のCT画像シリーズと800万以上のSNOMED CTアノテーションのセマンティックエンリッチ化につながった。
論文 参考訳(メタデータ) (2024-06-21T17:55:22Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
我々は,MAMBAフレームワークにステートスペースモデル(SSM)とアドバンスト階層ネットワーク(AHNet)を統合したMamba-Ahnetを紹介する。
Mamba-Ahnetは、SSMの特徴抽出と理解をAHNetの注意機構と画像再構成と組み合わせ、セグメンテーションの精度と堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-26T08:15:43Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。