Entanglement Entropy is Elastic Cross Section
- URL: http://arxiv.org/abs/2410.22414v1
- Date: Tue, 29 Oct 2024 18:00:03 GMT
- Title: Entanglement Entropy is Elastic Cross Section
- Authors: Ian Low, Zhewei Yin,
- Abstract summary: We present universal relations between entanglement entropy, which quantifies the quantum correlation between subsystems, and the elastic cross section.
Our result gives rise to a novel area law'' for entanglement entropy in a two-body system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present universal relations between entanglement entropy, which quantifies the quantum correlation between subsystems, and the elastic cross section, which is the primary observable for high energy particle scattering, by employing a careful formulation of wave packets for the incoming particles. For 2-to-2 elastic scattering with no initial entanglement and subdividing the system along particle labels, we show that both the R\'enyi and Tsallis entropies in the final states are directly proportional to the elastic cross section in unit of the transverse size for the initial wave packets, which is then interpreted as the elastic scattering probability. The relations do not depend on the underlying dynamics of the quantum field theory and are valid to all orders in coupling strengths. Furthermore, computing quantum correlations between momentum and non-kinematic data leads to entanglement entropies expressed as various semi-inclusive elastic cross sections. Our result gives rise to a novel ``area law'' for entanglement entropy in a two-body system.
Related papers
- Volume-law entanglement fragmentation of quasiparticles [0.087024326813104]
We study the entanglement entropy in quasiparticle states where certain unit patterns are excited repeatedly and sequentially in momentum space.
We find that in the scaling limit, each unit pattern contributes independently and universally to the entanglement, leading to a volume-law scaling of the entanglement entropy.
arXiv Detail & Related papers (2024-11-19T09:57:40Z) - Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.
These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.
We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Radiative transport in a periodic structure with band crossings [47.82887393172228]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Quantum quenches in driven-dissipative quadratic fermionic systems with
parity-time symmetry [0.0]
We study the quench dynamics of noninteracting fermionic quantum many-body systems that are subjected to Markovian drive and dissipation.
We show that transitions between dynamical pumping phases give rise to a new type of dynamical critical behavior of the rates of directional pumping.
arXiv Detail & Related papers (2023-04-04T14:41:34Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Hydrodynamics of quantum entropies in Ising chains with linear
dissipation [0.0]
We study the dynamics of quantum information and of quantum correlations after a quantum quench, in transverse field Ising chains subject to generic linear dissipation.
As we show, in the hydrodynamic limit of long times, large system sizes, and weak dissipation, entropy-related quantities admit a simple description within the so-called quasiparticle picture.
arXiv Detail & Related papers (2021-09-04T10:20:14Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Complete complementarity relations in system-environment decoherent
dynamics [0.0]
We study how entanglement is redistributed and turnedinto general correlations between the degrees of freedom of the whole system.
By considering the environment as part of a pure quantumsystem, the linear entropy is shown to be not just a measure of mixedness of a particular subsystem,but a correlation measure of the subsystem with rest of the world.
arXiv Detail & Related papers (2020-09-21T11:41:40Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.