論文の概要: Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- arxiv url: http://arxiv.org/abs/2410.22729v1
- Date: Wed, 30 Oct 2024 06:28:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:12.260886
- Title: Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- Title(参考訳): 時空間スナップショットからのドリフト・拡散・因果構造同定
- Authors: Vincent Guan, Joseph Janssen, Hossein Rahmani, Andrew Warren, Stephen Zhang, Elina Robeva, Geoffrey Schiebinger,
- Abstract要約: 本稿では,SDEの時空間からのドリフトと拡散を共同で推定する,最初の包括的アプローチを提案する。
これらのステップのそれぞれが、Kullback-Leiblerデータセットに関して常に最適であることを示す。
- 参考スコア(独自算出の注目度): 10.018568337210876
- License:
- Abstract: Stochastic differential equations (SDEs) are a fundamental tool for modelling dynamic processes, including gene regulatory networks (GRNs), contaminant transport, financial markets, and image generation. However, learning the underlying SDE from observational data is a challenging task, especially when individual trajectories are not observable. Motivated by burgeoning research in single-cell datasets, we present the first comprehensive approach for jointly estimating the drift and diffusion of an SDE from its temporal marginals. Assuming linear drift and additive diffusion, we prove that these parameters are identifiable from marginals if and only if the initial distribution is not invariant to a class of generalized rotations, a condition that is satisfied by most distributions. We further prove that the causal graph of any SDE with additive diffusion can be recovered from the SDE parameters. To complement this theory, we adapt entropy-regularized optimal transport to handle anisotropic diffusion, and introduce APPEX (Alternating Projection Parameter Estimation from $X_0$), an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals. We show that each of these steps are asymptotically optimal with respect to the Kullback-Leibler divergence, and demonstrate APPEX's effectiveness on simulated data from linear additive noise SDEs.
- Abstract(参考訳): 確率微分方程式(SDE)は、遺伝子制御ネットワーク(GRN)、汚染物質輸送、金融市場、画像生成など、動的プロセスをモデル化するための基本的なツールである。
しかし、観測データから基礎となるSDEを学習することは、特に個々の軌道が観測できない場合、困難な作業である。
本研究は, 単細胞データセットの探索的研究により, 時間的限界からSDEのドリフトと拡散を共同で推定するための, 総合的なアプローチを初めて提示する。
線形ドリフトと加法的拡散を仮定すると、これらのパラメータが辺から特定可能であることは、初期分布が一般化された回転のクラスに不変でない場合に限る。
さらに、加法拡散を伴う任意のSDEの因果グラフがSDEパラメータから復元可能であることを証明した。
この理論を補完するために、異方性拡散に対処するためにエントロピー規則化された最適輸送を適用し、時間的限界からのみ付加雑音SDEのドリフト、拡散、因果グラフを推定する反復アルゴリズムであるAPPEX(Alternating Projection Parameter Estimation from $X_0$)を導入する。
これらのステップはそれぞれ,Kulback-Leiblerの発散に対して漸近的に最適であることを示し,線形付加雑音SDEのシミュレーションデータに対するAPPEXの有効性を示す。
関連論文リスト
- Diffusion-PINN Sampler [6.656265182236135]
物理インフォームドニューラルネットワーク(PINN)を用いて,基礎となるSDEの対数密度の制御偏微分方程式を解くことにより,ドリフト項を推定する新しい拡散型サンプリングアルゴリズムを提案する。
DPSの収束保証を確立するために、PINN残差損失によって対数密度近似の誤差を制御できることを証明した。
論文 参考訳(メタデータ) (2024-10-20T09:02:16Z) - AdjointDEIS: Efficient Gradients for Diffusion Models [2.0795007613453445]
拡散SDEに対する連続随伴方程式は、実際には単純なODEに単純化されていることを示す。
また, 顔形態形成問題の形で, 対向攻撃による誘導生成に対するAdjointDEISの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-23T19:51:33Z) - Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples [58.68233326265417]
非画像データは実際のアプリケーションで広く使われており、ノイズが多い傾向にある。
リスク感受性SDEは、リスクベクトルによってパラメータ化された微分方程式(SDE)の一種である。
我々はガウス雑音分布と非ガウス雑音分布の両方について系統的研究を行う。
論文 参考訳(メタデータ) (2024-02-03T08:41:51Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
偏微分方程式(SDE)の解によって観測された幾何学的過程が支配される潜在変数モデルにおける変分ベイズ推論の問題を考察する。
実験により,提案型の潜伏SDEを既存の一段階のオイラー・丸山スキームを用いて効率的に学習できることが示されている。
論文 参考訳(メタデータ) (2023-06-28T14:18:52Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
ゼロ拡散(ODE)の場合と大きな拡散の場合の2つの制限シナリオについて数学的に検討する。
その結果, 生成過程の終端に摂動が発生すると, ODEモデルは大きな拡散係数でSDEモデルより優れることがわかった。
論文 参考訳(メタデータ) (2023-06-03T09:27:15Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
構造方程式モデル(SEM)は、有向非巡回グラフ(DAG)を介して表される因果関係を推論する効果的な枠組みである。
近年の進歩により、観測データからDAGの有効最大点推定が可能となった。
線形ガウス SEM を特徴付ける DAG 上の分布を推定するための変分フレームワークである BCD Nets を提案する。
論文 参考訳(メタデータ) (2021-12-06T03:35:21Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。