論文の概要: An Overview of Causal Inference using Kernel Embeddings
- arxiv url: http://arxiv.org/abs/2410.22754v1
- Date: Wed, 30 Oct 2024 07:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:10.619700
- Title: An Overview of Causal Inference using Kernel Embeddings
- Title(参考訳): カーネル埋め込みを用いた因果推論の概観
- Authors: Dino Sejdinovic,
- Abstract要約: カーネル埋め込みは、様々な統計的推論問題における確率測度を表現する強力なツールとして登場した。
主な課題は、因果関係を特定し、観測データから平均的な治療効果を推定することである。
- 参考スコア(独自算出の注目度): 14.298666697532838
- License:
- Abstract: Kernel embeddings have emerged as a powerful tool for representing probability measures in a variety of statistical inference problems. By mapping probability measures into a reproducing kernel Hilbert space (RKHS), kernel embeddings enable flexible representations of complex relationships between variables. They serve as a mechanism for efficiently transferring the representation of a distribution downstream to other tasks, such as hypothesis testing or causal effect estimation. In the context of causal inference, the main challenges include identifying causal associations and estimating the average treatment effect from observational data, where confounding variables may obscure direct cause-and-effect relationships. Kernel embeddings provide a robust nonparametric framework for addressing these challenges. They allow for the representations of distributions of observational data and their seamless transformation into representations of interventional distributions to estimate relevant causal quantities. We overview recent research that leverages the expressiveness of kernel embeddings in tandem with causal inference.
- Abstract(参考訳): カーネル埋め込みは、様々な統計的推論問題における確率測度を表現する強力なツールとして登場した。
確率測度を再生カーネルヒルベルト空間(RKHS)にマッピングすることで、カーネル埋め込みは変数間の複雑な関係の柔軟な表現を可能にする。
これらは、仮説テストや因果効果推定など、下流の分布の表現を他のタスクに効率的に転送するメカニズムとして機能する。
因果推論の文脈において、主な課題は因果関係の同定と観察データからの平均治療効果の推定である。
カーネルの埋め込みは、これらの課題に対処するための堅牢な非パラメトリックフレームワークを提供する。
観測データの分布の表現と、干渉分布の表現へのシームレスな変換を可能にして、関連する因果量の推定を行う。
因果推論によるカーネル埋め込みの表現性を利用した最近の研究の概要を概説する。
関連論文リスト
- A Semiparametric Approach to Causal Inference [2.092897805817524]
因果推論において、重要な問題は介入や治療の効果を定量化することである。
本稿では, 半パラメトリック密度比モデル(DRM)を用いて, 対物分布の特徴付けを行う。
我々のモデルは、対物分布に関する厳密なパラメトリック仮定を避けることで柔軟性を提供する。
論文 参考訳(メタデータ) (2024-11-01T18:03:38Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
介入データを含むデータセットは,データ分布に関する現実的な仮定の下で効果的に抽出可能であることを示す。
観察的および介入的設定における各変数の限界分布の比較に依拠する介入忠実性を導入する。
また、多数の単一変数の介入を含むデータセットから因果順序を推測するアルゴリズムであるIntersortを導入する。
論文 参考訳(メタデータ) (2024-05-28T16:07:17Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
本稿では,ガウス過程ネットワークモデルにおける仮説的介入の効果のベイズ推定の問題について考察する。
本稿では,ネットワーク全体の介入の効果をシミュレートし,下流変数に対する介入の効果を伝播させることにより,GPNに対する因果推論を行う方法について述べる。
両フレームワークを既知の因果グラフのケースを超えて拡張し,マルコフ連鎖モンテカルロ法による因果構造の不確実性を取り入れた。
論文 参考訳(メタデータ) (2024-02-01T14:39:59Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。