Classical simulation of universal measurement-based quantum computation using multipartite Bell scenarios
- URL: http://arxiv.org/abs/2410.23734v1
- Date: Thu, 31 Oct 2024 08:40:51 GMT
- Title: Classical simulation of universal measurement-based quantum computation using multipartite Bell scenarios
- Authors: Cihan Okay, Atak Talay Yucel, Selman Ipek,
- Abstract summary: We introduce a new classical simulation algorithm based on non-signaling polytopes of multipartite Bell scenarios.
In our model, the simultaneous presence of non-stabilizerness and entanglement is necessary for quantum speedup.
- Score: 0.0
- License:
- Abstract: We introduce a new classical simulation algorithm based on non-signaling polytopes of multipartite Bell scenarios, capable of simulating universal measurement-based quantum computation with single-qubit Pauli measurements. In our model, the simultaneous presence of non-stabilizerness and entanglement is necessary for quantum speedup. The region of quantum states that can be efficiently simulated includes the Bell polytope and extends beyond what is currently achievable by sampling algorithms based on phase space methods.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Lower bound for simulation cost of open quantum systems: Lipschitz continuity approach [5.193557673127421]
We present a general framework to calculate the lower bound for simulating a broad class of quantum Markov semigroups.
Our framework can be applied to both unital and non-unital quantum dynamics.
arXiv Detail & Related papers (2024-07-22T03:57:41Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz [0.0]
We propose a scalable technique for approximate simulations of intermediate-size quantum circuits.
We benchmark the proposed technique for checkerboard-type intermediate-size quantum circuits of 27 qubits with various depths.
arXiv Detail & Related papers (2021-12-28T09:05:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Bayesian Quantum Multiphase Estimation Algorithm [0.0]
We study a parallel (simultaneous) estimation of multiple arbitrary phases.
The algorithm proves a certain noise resilience and can be implemented using single photons and standard optical elements.
arXiv Detail & Related papers (2020-10-18T19:32:07Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.