論文の概要: Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2410.24002v1
- Date: Thu, 31 Oct 2024 15:02:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:37.698876
- Title: Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis
- Title(参考訳): 早期アルツハイマー病診断における古典的, ディープ・ニューロイメージング・バイオマーカーの有用性の検討
- Authors: Milla E. Nielsen, Mads Nielsen, Mostafa Mehdipour Ghazi,
- Abstract要約: アルツハイマー病(AD)は認知症の主要な原因であり、早期発見は効果的な介入に不可欠である。
本研究の目的は,様々な画像バイオマーカーを抽出し,統合することにより,早期ADの有意な指標を検出することである。
- 参考スコア(独自算出の注目度): 2.2667044928324747
- License:
- Abstract: Alzheimer's disease (AD) is the leading cause of dementia, and its early detection is crucial for effective intervention, yet current diagnostic methods often fall short in sensitivity and specificity. This study aims to detect significant indicators of early AD by extracting and integrating various imaging biomarkers, including radiomics, hippocampal texture descriptors, cortical thickness measurements, and deep learning features. We analyze structural magnetic resonance imaging (MRI) scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts, utilizing comprehensive image analysis and machine learning techniques. Our results show that combining multiple biomarkers significantly improves detection accuracy. Radiomics and texture features emerged as the most effective predictors for early AD, achieving AUCs of 0.88 and 0.72 for AD and MCI detection, respectively. Although deep learning features proved to be less effective than traditional approaches, incorporating age with other biomarkers notably enhanced MCI detection performance. Additionally, our findings emphasize the continued importance of classical imaging biomarkers in the face of modern deep-learning approaches, providing a robust framework for early AD diagnosis.
- Abstract(参考訳): アルツハイマー病(AD)は認知症の主要な原因であり、早期発見は効果的な介入に不可欠であるが、現在の診断法は感度と特異性に乏しいことが多い。
本研究の目的は,放射線,海馬テクスチャ記述子,皮質厚さ測定,深層学習機能など,様々な画像バイオマーカーを抽出,統合することにより,早期ADの有意な指標を検出することである。
我々は、総合的な画像解析と機械学習技術を利用して、アルツハイマー病神経画像イニシアチブ(ADNI)コホートからの構造磁気共鳴イメージング(MRI)スキャンを分析した。
その結果,複数のバイオマーカーを組み合わせることで検出精度が大幅に向上した。
放射能とテクスチャが早期ADの最も効果的な予測器として出現し、それぞれAUCが0.88と0.72でADとMCIが検出された。
深層学習は従来の手法よりも効果が低かったが,MCI検出性能が向上した他のバイオマーカーに年齢を取り入れた。
さらに,近年の深層学習における画像バイオマーカーの重要性が強調され,早期AD診断のための堅牢な枠組みが確立された。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Spatio-Temporal Similarity Measure based Multi-Task Learning for
Predicting Alzheimer's Disease Progression using MRI Data [18.669489433316127]
本稿では,アルツハイマー病の進行を効果的に予測するための,新しい時間的類似度尺度に基づくマルチタスク学習手法を提案する。
また, バイオマーカー間の関係の変化を識別するために, 縦方向の安定性の選択を行うことも可能である。
本研究では,皮質体積および表面積の相乗的劣化指標が認知的予測に有意な影響を及ぼすことを証明した。
論文 参考訳(メタデータ) (2023-11-06T21:59:19Z) - Multimodal Identification of Alzheimer's Disease: A Review [4.6358128931887705]
アルツハイマー病は認知障害と記憶喪失を特徴とする進行性神経疾患である。
近年、多くのチームがADの早期分類研究にコンピュータ支援診断技術を適用している。
論文 参考訳(メタデータ) (2023-10-06T12:48:15Z) - Early Detection of Alzheimer's Disease using Bottleneck Transformers [1.14219428942199]
本稿では,アルツハイマー病の早期発見のために,自己注意型ボトルネックトランスフォーマーのアンサンブルを用いた新しいアプローチを提案する。
提案手法は広く受け入れられているADNIデータセット上でテストされ、精度、精度、リコール、F1スコア、ROC-AUCスコアをパフォーマンス指標として評価している。
論文 参考訳(メタデータ) (2023-05-01T16:17:52Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Skeleton-based action analysis for ADHD diagnosis [10.393047508477173]
骨格に基づく行動認識フレームワークを用いた新しいADHD診断システムを提案する。
従来の手法と比較して,提案手法はコスト効率と大幅な性能向上を示す。
本手法はマススクリーニングに広く応用されている。
論文 参考訳(メタデータ) (2023-04-14T13:07:27Z) - Multimodal Attention-based Deep Learning for Alzheimer's Disease
Diagnosis [9.135911493822261]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、最も複雑な病原体を持つ神経変性疾患である。
われわれは,ADの有無を正確に検出するためのマルチモーダルアルツハイマー病診断フレームワーク(MADDi)を提案する。
論文 参考訳(メタデータ) (2022-06-17T15:10:00Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
経頭蓋磁気刺激(TMS)と脳波記録(TMS-EEG)を組み合わせることで、脳、特にアルツハイマー病(AD)の研究に大きな可能性を示す。
本研究では,脳機能の変化を反映した電位指標として,脳波信号のTMS誘発摂動の持続時間を自動的に決定する手法を提案する。
論文 参考訳(メタデータ) (2022-04-29T19:27:06Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。