論文の概要: APEBench: A Benchmark for Autoregressive Neural Emulators of PDEs
- arxiv url: http://arxiv.org/abs/2411.00180v1
- Date: Thu, 31 Oct 2024 19:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:34.321644
- Title: APEBench: A Benchmark for Autoregressive Neural Emulators of PDEs
- Title(参考訳): APEBench: PDEの自動回帰型ニューラルネットワークエミュレータのベンチマーク
- Authors: Felix Koehler, Simon Niedermayr, Rüdiger Westermann, Nils Thuerey,
- Abstract要約: APEBenchは、偏微分方程式を解くための自己回帰型神経エミュレータを評価するベンチマークスイートである。
APEBenchはJAXをベースにしており、シームレスに統合された差別化可能なシミュレーションフレームワークを提供する。
アンロールトレーニングのための新しい分類法を提案し,PDEダイナミクスのためのユニークな識別子を提案する。
- 参考スコア(独自算出の注目度): 22.03564074712183
- License:
- Abstract: We introduce the Autoregressive PDE Emulator Benchmark (APEBench), a comprehensive benchmark suite to evaluate autoregressive neural emulators for solving partial differential equations. APEBench is based on JAX and provides a seamlessly integrated differentiable simulation framework employing efficient pseudo-spectral methods, enabling 46 distinct PDEs across 1D, 2D, and 3D. Facilitating systematic analysis and comparison of learned emulators, we propose a novel taxonomy for unrolled training and introduce a unique identifier for PDE dynamics that directly relates to the stability criteria of classical numerical methods. APEBench enables the evaluation of diverse neural architectures, and unlike existing benchmarks, its tight integration of the solver enables support for differentiable physics training and neural-hybrid emulators. Moreover, APEBench emphasizes rollout metrics to understand temporal generalization, providing insights into the long-term behavior of emulating PDE dynamics. In several experiments, we highlight the similarities between neural emulators and numerical simulators.
- Abstract(参考訳): 本稿では,自動回帰型PDEエミュレータベンチマーク(APEBench)を紹介する。これは偏微分方程式を解くための自己回帰型神経エミュレータを評価するための総合ベンチマークスイートである。
APEBenchはJAXをベースにしており、1D、2D、3Dで46の異なるPDEを可能にする、効率的な擬スペクトル法を使ったシームレスに統合可能な微分可能シミュレーションフレームワークを提供する。
そこで本研究では,学習エミュレータの系統解析と比較を円滑に行い,古典的数値法の安定性基準に直接関係するPDEダイナミクスのユニークな識別子を提案する。
APEBenchは多様なニューラルアーキテクチャの評価を可能にし、既存のベンチマークとは異なり、ソルバの緊密な統合により、微分可能な物理トレーニングとニューラルハイブリッドエミュレータをサポートすることができる。
さらに、APEBenchは、時間的一般化を理解するためにロールアウトメトリクスを強調し、PDEダイナミクスをエミュレートする長期的な振る舞いに関する洞察を提供する。
いくつかの実験では、ニューラルエミュレータと数値シミュレータの類似点を強調した。
関連論文リスト
- LE-PDE++: Mamba for accelerating PDEs Simulations [4.7505178698234625]
PDEの潜在進化法は、古典的および深層学習に基づくPDEソルバの計算強度に対処するように設計されている。
本手法は, LE-PDEと比較して推定速度を2倍にし, パラメータ効率を同じレベルに維持する。
論文 参考訳(メタデータ) (2024-11-04T09:04:11Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
薬物発見において、分子動力学シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合の正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
我々は、標準的な数値MDシミュレーションよりも2000$times$のスピードアップを達成し、安定性の指標の下では、他のMLアプローチよりも最大80%高い効率で、NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities [0.0]
この戦略は、偏微分方程式のニューラルネットワークサロゲートモデルを効率的に訓練するために使用できる。
提案したニューラルブートストラップ法(以下 NBM と呼ぶ)は,PDE システムの有限離散化残基の評価に基づいている。
NBMは他のPINNタイプのフレームワークとメモリとトレーニングの速度で競合することを示す。
論文 参考訳(メタデータ) (2022-10-25T20:13:26Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
論文 参考訳(メタデータ) (2021-06-09T20:46:17Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - Using Machine Learning to Emulate Agent-Based Simulations [0.0]
エージェントベースモデル(ABM)解析に用いる統計エミュレータとして,複数の機械学習手法の性能評価を行った。
エージェントベースのモデリングは、モデルに対するより堅牢な感度解析を容易にするため、エミュレーションに機械学習を用いる利点がある。
論文 参考訳(メタデータ) (2020-05-05T11:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。