論文の概要: Long-time integration of parametric evolution equations with
physics-informed DeepONets
- arxiv url: http://arxiv.org/abs/2106.05384v1
- Date: Wed, 9 Jun 2021 20:46:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:07:46.340657
- Title: Long-time integration of parametric evolution equations with
physics-informed DeepONets
- Title(参考訳): 物理インフォームドディープオネットによるパラメトリック進化方程式の長期統合
- Authors: Sifan Wang, Paris Perdikaris
- Abstract要約: ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ordinary and partial differential equations (ODEs/PDEs) play a paramount role
in analyzing and simulating complex dynamic processes across all corners of
science and engineering. In recent years machine learning tools are aspiring to
introduce new effective ways of simulating PDEs, however existing approaches
are not able to reliably return stable and accurate predictions across long
temporal horizons. We aim to address this challenge by introducing an effective
framework for learning infinite-dimensional operators that map random initial
conditions to associated PDE solutions within a short time interval. Such
latent operators can be parametrized by deep neural networks that are trained
in an entirely self-supervised manner without requiring any paired input-output
observations. Global long-time predictions across a range of initial conditions
can be then obtained by iteratively evaluating the trained model using each
prediction as the initial condition for the next evaluation step. This
introduces a new approach to temporal domain decomposition that is shown to be
effective in performing accurate long-time simulations for a wide range of
parametric ODE and PDE systems, from wave propagation, to reaction-diffusion
dynamics and stiff chemical kinetics, all at a fraction of the computational
cost needed by classical numerical solvers.
- Abstract(参考訳): 常微分方程式と偏微分方程式(odes/pdes)は、科学と工学の全分野にわたる複雑な動的過程の解析とシミュレーションにおいて重要な役割を果たす。
近年、機械学習ツールは、pdesをシミュレートする新しい効果的な方法を導入しようとしているが、既存のアプローチでは、長い時間軸にわたって安定かつ正確な予測を確実に返すことはできない。
ランダムな初期条件を関連するPDEソリューションに短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを導入することで、この問題に対処することを目指している。
このような潜在演算子は、ペアの入出力観測を必要とせずに、完全に自己監視された方法でトレーニングされるディープニューラルネットワークによってパラメトリ化することができる。
次に、各予測を次の評価ステップの初期条件として、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測を得ることができる。
これは時間領域分解に新しいアプローチを導入し、波動伝播から反応拡散力学や固化化学力学まで幅広いパラメトリックODEとPDEシステムに対して、古典的な数値解法で必要とされる計算コストのごく一部で正確な長時間シミュレーションを行うのに有効であることを示した。
関連論文リスト
- Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation [21.206744437644982]
無限次元半線形PDEに対する解演算子に対する学習に基づく状態空間アプローチを提案する。
本研究では,予測と修正操作を組み合わせることで,予測とデータ同化の両立を可能にするフレキシブルな手法を開発した。
本研究では, 倉本・シヴァシンスキー, ナヴィエ・ストークス, コルテヴェーグ・ド・ブリーズ方程式を用いて, 提案モデルが雑音に対して頑健であり, 任意の量の測定値を用いて, 計算オーバーヘッドが少なく, 長期間の地平線上での予測を補正できることを示す。
論文 参考訳(メタデータ) (2024-02-24T00:10:51Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Deep Convolutional Architectures for Extrapolative Forecast in
Time-dependent Flow Problems [0.0]
深層学習技術は、対流に支配された問題に対するシステムの力学をモデル化するために用いられる。
これらのモデルは、PDEから得られた連続した時間ステップに対する高忠実度ベクトル解のシーケンスとして入力される。
ディープオートエンコーダネットワークのような非侵襲的な低次モデリング技術を用いて高忠実度スナップショットを圧縮する。
論文 参考訳(メタデータ) (2022-09-18T03:45:56Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。