論文の概要: KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2411.00278v1
- Date: Fri, 01 Nov 2024 00:24:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:29.601435
- Title: KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
- Title(参考訳): Kan-AD: Kolmogorov-Arnold ネットワークによる時系列異常検出
- Authors: Quan Zhou, Changhua Pei, Fei Sun, Jing Han, Zhengwei Gao, Dan Pei, Haiming Zhang, Gaogang Xie, Jianhui Li,
- Abstract要約: 時系列異常検出(TSAD)は,大規模クラウドサービスやWebシステムにおいて重要なコンポーネントとなっている。
深層学習に基づく予測手法は、強力な学習能力のためにTSADで非常に人気がある。
- 参考スコア(独自算出の注目度): 20.42387034910592
- License:
- Abstract: Time series anomaly detection (TSAD) has become an essential component of large-scale cloud services and web systems because it can promptly identify anomalies, providing early warnings to prevent greater losses. Deep learning-based forecasting methods have become very popular in TSAD due to their powerful learning capabilities. However, accurate predictions don't necessarily lead to better anomaly detection. Due to the common occurrence of noise, i.e., local peaks and drops in time series, existing black-box learning methods can easily learn these unintended patterns, significantly affecting anomaly detection performance. Kolmogorov-Arnold Networks (KAN) offers a potential solution by decomposing complex temporal sequences into a combination of multiple univariate functions, making the training process more controllable. However, KAN optimizes univariate functions using spline functions, which are also susceptible to the influence of local anomalies. To address this issue, we present KAN-AD, which leverages the Fourier series to emphasize global temporal patterns, thereby mitigating the influence of local peaks and drops. KAN-AD improves both effectiveness and efficiency by transforming the existing black-box learning approach into learning the weights preceding univariate functions. Experimental results show that, compared to the current state-of-the-art, we achieved an accuracy increase of 15% while boosting inference speed by 55 times.
- Abstract(参考訳): 時系列異常検出(TSAD)は、大規模クラウドサービスやWebシステムにとって重要なコンポーネントとなっている。
深層学習に基づく予測手法は、強力な学習能力のためにTSADで非常に人気がある。
しかし、正確な予測が必ずしもより良い異常検出につながるとは限らない。
従来のブラックボックス学習手法では、ノイズ、すなわち時間列の局所的なピークやドロップが頻繁に発生するため、これらの意図しないパターンを容易に学習することができ、異常検出性能に大きな影響を及ぼす。
Kolmogorov-Arnold Networks (KAN) は、複雑な時間列を複数の単変数関数の組み合わせに分解し、トレーニングプロセスをより制御しやすくすることで、潜在的なソリューションを提供する。
しかしkanは,局所異常の影響を受けやすいスプライン関数を用いて一変量関数を最適化する。
この問題に対処するため、Fourierシリーズを活用してグローバルな時間的パターンを強調し、局所的なピークやドロップの影響を緩和するkan-ADを提案する。
Kan-ADは、既存のブラックボックス学習アプローチを、単変量関数の前の重みを学習することで、効果と効率を両立させる。
実験結果から,現在の最先端技術と比較して,推測速度を55倍に向上させるとともに,精度15%の精度向上を実現した。
関連論文リスト
- Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
変分オートエンコーダ(VAE)は、より優れたノイズ除去能力のために近年人気を集めている。
FCVAEは、グローバルとローカルの両方の周波数特徴を条件付き変分オートエンコーダ(CVAE)の条件に同時に統合する革新的なアプローチを利用する
提案手法は, パブリックデータセットと大規模クラウドシステムを用いて評価され, その結果, 最先端の手法よりも優れた結果が得られた。
論文 参考訳(メタデータ) (2024-02-05T09:06:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
時系列異常検出のための周波数領域における多重正規パターン対応異常検出手法を提案する。
i) 統一モデルで多様な正規パターンを扱うのに優れたパターン抽出機構、(ii) 時間領域における短期異常を増幅し周波数領域における異常の再構築を妨げる双対的畳み込み機構、(iii) 周波数領域のスパーシリティと並列性を活用してモデル効率を向上させる。
論文 参考訳(メタデータ) (2023-11-26T03:31:43Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
我々はImDiffusionという新しい異常検出フレームワークを提案する。
ImDiffusionは時系列計算と拡散モデルを組み合わせて、正確で堅牢な異常検出を実現する。
我々はImDiffusionの性能をベンチマークデータセットの広範な実験により評価する。
論文 参考訳(メタデータ) (2023-07-03T04:57:40Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。