論文の概要: Variational Neural Stochastic Differential Equations with Change Points
- arxiv url: http://arxiv.org/abs/2411.00635v1
- Date: Fri, 01 Nov 2024 14:46:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:15.372823
- Title: Variational Neural Stochastic Differential Equations with Change Points
- Title(参考訳): 変化点を持つ変分ニューラル確率微分方程式
- Authors: Yousef El-Laham, Zhongchang Sun, Haibei Zhu, Tucker Balch, Svitlana Vyetrenko,
- Abstract要約: ニューラル微分方程式(ニューラルSDE)を用いた時系列データにおける変化点のモデル化について検討する。
本稿では,時系列をニューラルSDEとしてモデル化するための変分オートエンコーダ(VAE)フレームワークに基づく,新しいモデル定式化とトレーニング手法を提案する。
本稿では,従来のパラメトリックSDEと分散シフトを伴う実データセットの両方を効果的にモデル化できることを示す。
- 参考スコア(独自算出の注目度): 4.692174333076032
- License:
- Abstract: In this work, we explore modeling change points in time-series data using neural stochastic differential equations (neural SDEs). We propose a novel model formulation and training procedure based on the variational autoencoder (VAE) framework for modeling time-series as a neural SDE. Unlike existing algorithms training neural SDEs as VAEs, our proposed algorithm only necessitates a Gaussian prior of the initial state of the latent stochastic process, rather than a Wiener process prior on the entire latent stochastic process. We develop two methodologies for modeling and estimating change points in time-series data with distribution shifts. Our iterative algorithm alternates between updating neural SDE parameters and updating the change points based on either a maximum likelihood-based approach or a change point detection algorithm using the sequential likelihood ratio test. We provide a theoretical analysis of this proposed change point detection scheme. Finally, we present an empirical evaluation that demonstrates the expressive power of our proposed model, showing that it can effectively model both classical parametric SDEs and some real datasets with distribution shifts.
- Abstract(参考訳): 本研究では,ニューラル確率微分方程式(ニューラルSDE)を用いた時系列データの変化点のモデル化について検討する。
本稿では,時系列をニューラルSDEとしてモデル化するための変分オートエンコーダ(VAE)フレームワークに基づく,新しいモデル定式化とトレーニング手法を提案する。
VAEとしてニューラルSDEを訓練する既存のアルゴリズムとは異なり、提案アルゴリズムは潜在確率過程の初期状態に先立ってガウス的のみを必要とする。
時系列データの変化点を分布シフトでモデル化・推定する2つの手法を開発した。
我々の反復アルゴリズムは、ニューラルネットワークのSDEパラメータの更新と、シーケンシャル・オフィシャル・オフィシャル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・オプティカル・アルゴリズムに基づく変更点の更新を交互に行う。
本稿では,この変化点検出方式に関する理論的解析を行う。
最後に,従来のパラメトリックSDEと分散シフトを伴う実データセットの両方を効果的にモデル化できることを示す。
関連論文リスト
- SPDE priors for uncertainty quantification of end-to-end neural data
assimilation schemes [4.213142548113385]
ディープラーニングコミュニティの最近の進歩は、データ同化変動フレームワークを組み込んだニューラルネットワークとしてこの問題に対処する上で有効である。
本研究では、SPDEに基づくプロセスから、空間と時間の両方で非定常共分散を扱える事前モデルを推定する。
我々のニューラル変分法は、両方の状態SPDEパラメトリゼーションによる拡張状態定式化を組み込むように修正されている。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Neural Stochastic Differential Equations with Change Points: A
Generative Adversarial Approach [5.408169633844698]
本稿では,ニューラルSDEをモデルとした時系列変化点検出アルゴリズムを提案する。
提案手法は、未知の変化点と、各変化点に対応する異なるニューラルネットワークSDEモデルのパラメータを共同で学習する。
論文 参考訳(メタデータ) (2023-12-20T16:16:29Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Latent Neural Stochastic Differential Equations for Change Point
Detection [0.6445605125467574]
SDE(Latent Neural Differential Equations)に基づく新しい変化点検出アルゴリズムを提案する。
本手法は,プロセスから潜在空間への非線形な深層学習変換を学習し,時間とともにその進化を記述するSDEを推定する。
このアルゴリズムは、学習したプロセスの確率比を異なるタイムスタンプで使い、プロセスの変化点を見つける。
論文 参考訳(メタデータ) (2022-08-22T13:53:13Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Continuous-time stochastic gradient descent for optimizing over the
stationary distribution of stochastic differential equations [7.65995376636176]
定常分布の微分方程式(SDE)モデルを最適化するための新しい連続時間勾配降下法を開発した。
線形SDEモデルに対するオンライン前方伝播アルゴリズムの収束性を厳密に証明し、非線形例に対する数値結果を示す。
論文 参考訳(メタデータ) (2022-02-14T11:45:22Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。