論文の概要: DiabML: AI-assisted diabetes diagnosis method with meta-heuristic-based feature selection
- arxiv url: http://arxiv.org/abs/2411.00858v1
- Date: Wed, 30 Oct 2024 16:06:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:28:19.957054
- Title: DiabML: AI-assisted diabetes diagnosis method with meta-heuristic-based feature selection
- Title(参考訳): DiabML:メタヒューリスティックな特徴選択を用いたAI支援型糖尿病診断法
- Authors: Vahideh Hayyolalam, Öznur Özkasap,
- Abstract要約: 本稿では,BWOアルゴリズムとML法を用いたハイブリッド糖尿病リスク検出手法であるDiabMLを提案する。
DiabMLはAdaBoostによる86.1%の分類精度を達成した。
- 参考スコア(独自算出の注目度): 4.788163807490197
- License:
- Abstract: Diabetes is a chronic disorder identified by the high sugar level in the blood that can cause various different disorders such as kidney failure, heart attack, sightlessness, and stroke. Developments in the healthcare domain by facilitating the early detection of diabetes risk can help not only caregivers but also patients. AIoMT is a recent technology that integrates IoT and machine learning methods to give services for medical purposes, which is a powerful technology for the early detection of diabetes. In this paper, we take advantage of AIoMT and propose a hybrid diabetes risk detection method, DiabML, which uses the BWO algorithm and ML methods. BWO is utilized for feature selection and SMOTE for imbalance handling in the pre-processing procedure. The simulation results prove the superiority of the proposed DiabML method compared to the existing works. DiabML achieves 86.1\% classification accuracy by AdaBoost classifier outperforms the relevant existing methods.
- Abstract(参考訳): 糖尿病は、腎不全、心臓発作、視覚障害、脳卒中などの様々な疾患を引き起こす、血中糖濃度の高い慢性疾患である。
糖尿病の早期発見を容易にする医療分野での開発は、介護者だけでなく患者にとっても有効である。
AIoMTは、IoTと機械学習メソッドを統合して医療目的でサービスを提供する最近の技術である。
本稿では,AIoMTを活用し,BWOアルゴリズムとML手法を用いたハイブリッド糖尿病リスク検出手法であるDiabMLを提案する。
BWOは特徴選択に利用され、SMOTEは前処理手順における不均衡処理に使用される。
シミュレーションの結果,既存手法と比較して,提案手法の優位性が確認された。
DiabMLは、AdaBoost分類器によって86.1\%の分類精度を達成する。
関連論文リスト
- CDRH Seeks Public Comment: Digital Health Technologies for Detecting
Prediabetes and Undiagnosed Type 2 Diabetes [0.0]
FDAは、糖尿病および未診断型2型糖尿病の検出におけるデジタルヘルス技術(DHT)の役割について、公衆のコメントを求めた。
DHTは、グルコース、ダイエット、症状、コミュニティの洞察などの健康信号をキャプチャする。
リモートスクリーニングツールの恩恵を最も受けられるサブ人口には、農村住民、少数派グループ、リスクの高い個人、医療アクセスの制限がある。
論文 参考訳(メタデータ) (2023-12-18T14:20:53Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
糖尿病の急激な増加は、糖尿病の発生を予防・予測するために予防措置を取る必要があることを要求する。
本稿では,IoT-エッジクラウド統合コンピューティングシステムにおける2型糖尿病予測のための機械学習ベースのスマートヘルスケアフレームワークであるHealthEdgeを提案する。
論文 参考訳(メタデータ) (2023-01-25T07:57:18Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
本稿では,危険因子に基づく糖尿病予測のためのIoT-edge-Artificial Intelligence (AI)-blockchainシステムを提案する。
提案システムはブロックチェーンによって支えられ、異なる病院の患者からリスクファクターデータの密集したビューを得る。
提案システムでは,最も正確なランダム林モデルを用いて,数値実験と比較解析を行った。
論文 参考訳(メタデータ) (2022-11-13T13:57:14Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
アルツハイマー病(AD)の早期診断は予防ケアの促進とさらなる進行の遅らせに不可欠である。
本稿では,AD分類誤差をトレーニング対象関数として一貫して用いたPLMの高速微調整法について検討する。
論文 参考訳(メタデータ) (2022-10-29T09:18:41Z) - A novel solution of deep learning for enhanced support vector machine
for predicting the onset of type 2 diabetes [32.25039205521283]
本研究の目的は,2型糖尿病の発症予測に要する処理時間を改善しつつ,AUC(Area Under the Curve)測定値の精度と精度を向上させることである。
提案手法は平均精度86.31 %、平均AUC値は0.8270 %または82.70 %であり、処理は3.8ミリ秒改善されている。
論文 参考訳(メタデータ) (2022-08-05T18:15:40Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。