論文の概要: AquaFuse: Waterbody Fusion for Physics Guided View Synthesis of Underwater Scenes
- arxiv url: http://arxiv.org/abs/2411.01119v1
- Date: Sat, 02 Nov 2024 03:20:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:20.557683
- Title: AquaFuse: Waterbody Fusion for Physics Guided View Synthesis of Underwater Scenes
- Title(参考訳): AquaFuse:水中シーンの物理ガイドビュー合成のための水体融合
- Authors: Md Abu Bakr Siddique, Jiayi Wu, Ioannis Rekleitis, Md Jahidul Islam,
- Abstract要約: 水中画像中の水体特性を合成する物理法であるAquaFuseについて紹介する。
AquaFused画像は94%以上の奥行き一貫性と90-95%の構造的類似性を保っていることがわかった。
- 参考スコア(独自算出の注目度): 6.535472265307327
- License:
- Abstract: We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.
- Abstract(参考訳): 水中画像中の水体特性を合成する物理法であるAquaFuseについて紹介する。
実際のデータ拡張と幾何学的に整合した水中シーンレンダリングを容易にする水体融合のためのクローズドフォームソリューションを定式化する。
AquaFuseは水中での光伝搬の物理的特性を利用して、あるシーンから別のシーンの物体の内容に水体を合成する。
データ駆動のスタイル転送とは異なり、AquaFuseは入力シーンにおける深さの一貫性とオブジェクトの幾何学を保存する。
多様な水中シーンに対する総合的な実験により,この特徴を検証した。
AquaFused画像は94%以上の奥行き一貫性と90-95%の構造的類似性を保っていることがわかった。
また,物体形状を保存し,水面融合プロセスに適応させることで,正確な3次元画像合成が可能であることも実証した。
AquaFuseは、水中イメージングとロボットビジョン応用のための幾何学保存スタイル転送によるデータ拡張の新しい研究方向を開く。
関連論文リスト
- Aquatic-GS: A Hybrid 3D Representation for Underwater Scenes [6.549998173302729]
本研究では,水中の物体と水媒体の両方を効果的に表現するハイブリッド3D表現手法であるAquatic-GSを提案する。
具体的には、暗黙的に水パラメータをモデル化するニューラルウォーターフィールド(NWF)を構築し、最新の3Dガウススプラッティング(3DGS)を拡張してオブジェクトを明示的にモデル化する。
両方のコンポーネントは、複雑な水中シーンを表現するために、物理学に基づく水中画像形成モデルを介して統合される。
論文 参考訳(メタデータ) (2024-10-31T22:24:56Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-10T16:33:56Z) - Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering [56.68286440268329]
現実世界のシーンの画像に仮想オブジェクトを正しく挿入するには、シーンの照明、幾何学、材料を深く理解する必要がある。
本稿では,物理ベースの逆レンダリングプロセスへのガイダンスとして,パーソナライズされた大規模拡散モデルを提案する。
本手法は,シーンライティングとトーンマッピングのパラメータを復元し,任意の仮想オブジェクトの光リアルな構成を室内や屋外のシーンの単一フレームやビデオで再現する。
論文 参考訳(メタデータ) (2024-08-19T05:15:45Z) - Atlantis: Enabling Underwater Depth Estimation with Stable Diffusion [30.122666238416716]
正確な地球深度データを用いて水中画像を生成する新しいパイプラインを提案する。
このアプローチは、水中深度推定のための教師付きモデルのトレーニングを容易にする。
我々は、特別に作成された水中、深度、テキストデータ三重項に基づいて訓練された独自のDepth2Underwater ControlNetを導入する。
論文 参考訳(メタデータ) (2023-12-19T08:56:33Z) - Ghost on the Shell: An Expressive Representation of General 3D Shapes [97.76840585617907]
リアルな素材と照明で高速な物理ベースのレンダリングを可能にするので、メッシュは魅力的だ。
近年の3次元形状の再構成と統計的モデリングの研究は、メッシュをトポロジカルに非フレキシブルであると批判している。
我々は水密面上の多様体符号距離場を定義することにより開曲面をパラメータ化する。
G-Shellは、非水密メッシュ再構築および生成タスクにおける最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-10-23T17:59:52Z) - RoomDreamer: Text-Driven 3D Indoor Scene Synthesis with Coherent
Geometry and Texture [80.0643976406225]
本稿では、強力な自然言語を利用して異なるスタイルの部屋を合成する「RoomDreamer」を提案する。
本研究は,入力シーン構造に整合した形状とテクスチャを同時に合成することの課題に対処する。
提案手法を検証するため,スマートフォンでスキャンした屋内シーンを大規模な実験に利用した。
論文 参考訳(メタデータ) (2023-05-18T22:57:57Z) - Water Simulation and Rendering from a Still Photograph [20.631819299595527]
本研究では,静止画1枚からリアルな水のアニメーションをシミュレートし,レンダリングする手法を提案する。
我々のアプローチは、様々な自然のシーンに対して、ユーザの介入なしに現実的な結果を生み出す。
論文 参考訳(メタデータ) (2022-10-05T20:47:44Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
我々は、物理インフォームド深度推定と色補正を可能にするために、ニューラルレイディアンス場(NeRF)の最先端技術を進めた。
提案手法であるWaterNeRFは,水中画像形成のための物理モデルを用いてパラメータを推定する。
劣化した画像と修正された水中画像と、シーンの深い深さの新たなビューを作成できる。
論文 参考訳(メタデータ) (2022-09-27T00:53:26Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z) - Semantic View Synthesis [56.47999473206778]
我々はセマンティック・ビュー・シンセサイザーの新たな課題に取り組み、セマンティック・ラベル・マップを入力として、合成シーンの自由視点レンダリングを生成する。
まず,3次元映像の視覚面の色と深度を合成することに焦点を当てた。
次に、合成色と深度を用いて、多面画像(MPI)表現予測プロセスに明示的な制約を課す。
論文 参考訳(メタデータ) (2020-08-24T17:59:46Z) - Deep Sea Robotic Imaging Simulator [6.2122699483618]
海洋の最大の部分である深海は、現在もほとんど未調査のままである。
深海画像は浅い海域で撮影された画像とは大きく異なり、この地域はコミュニティからはあまり注目されなかった。
本稿では,空気中のテクスチャと深度情報を入力として利用する物理モデルに基づく画像シミュレーションソリューションを提案する。
論文 参考訳(メタデータ) (2020-06-27T16:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。