論文の概要: Quantum Token Obfuscation via Superposition: A Post-Quantum Security Framework Using Multi-Basis Verification and Entropy-Driven Evolution
- arxiv url: http://arxiv.org/abs/2411.01252v3
- Date: Thu, 26 Jun 2025 17:37:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 15:38:00.063465
- Title: Quantum Token Obfuscation via Superposition: A Post-Quantum Security Framework Using Multi-Basis Verification and Entropy-Driven Evolution
- Title(参考訳): 重ね合わせによる量子トークン難読化:マルチバシス検証とエントロピー駆動進化を用いたポスト量子セキュリティフレームワーク
- Authors: S. M. Yousuf Iqbal Tomal, Abdullah Al Shafin,
- Abstract要約: トークン難読化を含む従来の暗号技術は、量子攻撃に対してますます脆弱である。
本研究では,重ね合わせとマルチバス検証を利用したトークン難読化手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional cryptographic techniques, including token obfuscation, are increasingly vulnerable to quantum attacks due to advancements in quantum computing. Quantum algorithms such as Shor's and Grover's pose significant threats to classical security methods, necessitating quantum-resistant alternatives. This study proposes a quantum-based approach to token obfuscation that leverages superposition and multi-basis verification to enhance security against quantum adversaries. Tokens are encoded in quantum superposition states, ensuring probabilistic concealment until measured. A multi-basis verification protocol strengthens authentication by requiring validation across multiple quantum measurement bases. Additionally, a quantum decay protocol and token refresh mechanism dynamically manage the token lifecycle to prevent prolonged exposure and replay attacks. The model was tested through quantum simulations, evaluating entropy quality, adversarial robustness, and token verification reliability. Experimental validation demonstrates an entropy quality score of 0.9996, a 0% attack success rate across five adversarial models, and a 67% false positive rate, indicating strict security constraints. These findings confirm the effectiveness of quantum-based token obfuscation in preventing unauthorized reconstruction. The proposed approach provides a foundation for post-quantum cryptographic security by integrating entropy-driven state transformations, dynamic token evolution, and multi-basis verification. Future work will focus on optimizing computational efficiency and testing real-world implementations on quantum hardware.
- Abstract(参考訳): トークン難読化を含む従来の暗号技術は、量子コンピューティングの進歩により、量子攻撃に対してますます脆弱になっている。
Shor'sやGrover'sのような量子アルゴリズムは、古典的なセキュリティ手法に重大な脅威をもたらし、量子に耐性のある代替手段を必要とする。
本研究は,重畳と多重基底検証を利用して量子敵に対するセキュリティを高めるトークン難読化のための量子ベースアプローチを提案する。
トークンは量子重畳状態に符号化され、測定されるまで確率的隠蔽が保証される。
マルチバス検証プロトコルは、複数の量子測度ベースにまたがる検証を必要とすることにより、認証を強化する。
さらに、量子減衰プロトコルとトークンリフレッシュ機構がトークンライフサイクルを動的に管理し、長時間の露光とリプレイ攻撃を防止する。
このモデルは、量子シミュレーションを用いて、エントロピーの品質、対向ロバスト性、トークンの信頼性を評価した。
実験による検証では、エントロピーの品質スコアは0.9996、攻撃成功率は0%、偽陽性率は67%で、厳格なセキュリティ制約を示している。
これらの知見は、不正な再建を防止するための量子ベースのトークン難読化の有効性を裏付けるものである。
提案手法は,エントロピー駆動状態変換,動的トークンの進化,マルチバス検証を統合することで,量子後暗号セキュリティの基礎を提供する。
今後の研究は、計算効率を最適化し、量子ハードウェア上での現実の実装をテストすることに集中する。
関連論文リスト
- Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
量子コンピューティングソリューションは、委譲されたコンピューティングを通じて、ますます商用環境にデプロイされている。
最も重要な問題の1つは、量子実装の秘密性とプロプライエタリ性を保証することである。
汎用不特定性難読化(iO)と機能暗号化スキームの提案以来、iOは一見汎用的な暗号プリミティブとして登場してきた。
論文 参考訳(メタデータ) (2024-11-19T07:37:24Z) - Quantum cryptography beyond key distribution: theory and experiment [0.7499722271664147]
本稿ではQKDを超える量子暗号の理論的および実験的発展について概説する。
主要な量子プリミティブとそのセキュリティレベルを直感的に分類し、その可能性と限界を要約し、現在のフォトニック技術でそれらの実装について議論する。
論文 参考訳(メタデータ) (2024-11-13T18:54:19Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
復号化可能な暗号化や復号化可能なプログラムなど,復号化可能なプリミティブの実現可能性を示す。
これは、マルチコピーセキュリティというより強い概念が、制限不能な暗号において到達範囲内にあることを示唆している。
論文 参考訳(メタデータ) (2024-10-17T02:37:40Z) - A Quantum-Resistant Photonic Hash Function [0.0]
フォトニック量子コンピュータ上でのガウスボソンサンプリングに基づく量子ハッシュ関数を提案する。
我々の研究は、量子時代の情報システムにおける新しい量子抵抗ハッシュのパラダイムの基礎を築いた。
論文 参考訳(メタデータ) (2024-09-30T04:19:26Z) - Unveiling Hidden Vulnerabilities in Quantum Systems by Expanding Attack Vectors through Heisenberg's Uncertainty Principle [0.0]
本研究は量子鍵分布(QKD)プロトコルにおける新たな脆弱性を明らかにする。
新たに同定された脆弱性は、ベル不等式(BIs)と隠れ変数理論(HVTs)の間の複雑な相互作用から生じる。
論文 参考訳(メタデータ) (2024-09-27T06:18:36Z) - Adversarial Robustness Guarantees for Quantum Classifiers [0.4934360430803066]
本稿では,QMLアルゴリズムの量子特性が,このような攻撃に対する基本的保護を導出できることを示す。
我々は、この保護の量子源を特定するために、多体物理学のツールを活用している。
論文 参考訳(メタデータ) (2024-05-16T18:00:01Z) - Quantum Query Lower Bounds for Key Recovery Attacks on the Even-Mansour
Cipher [0.0]
Even-Mansour (EM)暗号はブロック暗号の有名な構成の一つである。
クワカドとモリイは、量子敵が$n$-bit秘密鍵を$O(n)$非適応量子クエリで回収できることを実証した。
論文 参考訳(メタデータ) (2023-08-21T02:01:30Z) - Deploying hybrid quantum-secured infrastructure for applications: When
quantum and post-quantum can work together [0.8702432681310401]
量子鍵分布は、予期せぬ技術発展に対して安全である。
量子後暗号は古典的および量子コンピューティング技術の攻撃に対してさえも安全であると考えられている。
また、フルスタックの量子セキュリティインフラのさらなる発展における様々な方向性を示す。
論文 参考訳(メタデータ) (2023-04-10T13:44:21Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Enhancing Quantum Adversarial Robustness by Randomized Encodings [10.059889429655582]
本稿では,正規データサンプルをランダムに符号化することにより,量子学習システムを敵攻撃から保護する手法を提案する。
グローバルおよび局所ランダムなユニタリエンコーダの両方が指数関数的に勾配を消失させることを示す。
ランダムなブラックボックス量子誤り訂正エンコーダは、量子分類器を局所的な逆雑音から保護できることを示す。
論文 参考訳(メタデータ) (2022-12-05T19:00:08Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Practical quantum tokens without quantum memories and experimental tests [0.15749416770494706]
S-money'トークンは量子メモリや長距離量子通信を必要としない。
市販量子鍵分布技術を用いたSマネースキームの実装について述べる。
我々は、不信な量子暗号実装における標準的な仮定を考えると、偽造性やユーザーのプライバシーが保証されることを示した。
論文 参考訳(メタデータ) (2021-04-23T17:03:33Z) - Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier [73.70426431502803]
キリアンの4メッセージ簡潔な引数系は、標準モデルでは量子後安全であることを示す。
これにより、任意の偽の仮定から最初の量子後簡潔な論証システムが得られる。
論文 参考訳(メタデータ) (2021-03-15T05:09:17Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
我々は、ブラインド・アンフォージェビリティ(英語版)と呼ばれる量子敵に対する非フォージェビリティ(英語版)の自然な定義を提案する。
この概念は、予測値に「部分的に盲目」アクセスを使用できる敵が存在する場合、関数を予測可能と定義する。
標準構造と減量支援のためのブラインド・アンフォージェビリティの適合性を示す。
論文 参考訳(メタデータ) (2018-03-10T05:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。