論文の概要: Conformalized High-Density Quantile Regression via Dynamic Prototypes-based Probability Density Estimation
- arxiv url: http://arxiv.org/abs/2411.01266v1
- Date: Sat, 02 Nov 2024 14:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:09.342545
- Title: Conformalized High-Density Quantile Regression via Dynamic Prototypes-based Probability Density Estimation
- Title(参考訳): 動的プロトタイプに基づく確率密度推定による等角化高密度量子レグレッション
- Authors: Batuhan Cengiz, Halil Faruk Karagoz, Tufan Kumbasar,
- Abstract要約: 動的適応型プロトタイプを用いた共形化高密度量子化回帰手法を提案する。
本手法は, 量子化ビンを適応的に追加, 削除, 移動させることにより, プロトタイプの集合を最適化する。
多様なデータセットと次元にわたる実験により,提案手法が常に高品質な予測領域を達成できることが確認された。
- 参考スコア(独自算出の注目度): 2.526146573337397
- License:
- Abstract: Recent methods in quantile regression have adopted a classification perspective to handle challenges posed by heteroscedastic, multimodal, or skewed data by quantizing outputs into fixed bins. Although these regression-as-classification frameworks can capture high-density prediction regions and bypass convex quantile constraints, they are restricted by quantization errors and the curse of dimensionality due to a constant number of bins per dimension. To address these limitations, we introduce a conformalized high-density quantile regression approach with a dynamically adaptive set of prototypes. Our method optimizes the set of prototypes by adaptively adding, deleting, and relocating quantization bins throughout the training process. Moreover, our conformal scheme provides valid coverage guarantees, focusing on regions with the highest probability density. Experiments across diverse datasets and dimensionalities confirm that our method consistently achieves high-quality prediction regions with enhanced coverage and robustness, all while utilizing fewer prototypes and memory, ensuring scalability to higher dimensions. The code is available at https://github.com/batuceng/max_quantile .
- Abstract(参考訳): 量子レグレッションの最近の手法は、出力を固定されたビンに量子化することで、ヘテロセダスティック、マルチモーダル、スキュードデータによって引き起こされる課題に対処する分類の観点を採用している。
これらの回帰分類フレームワークは、高密度の予測領域をキャプチャし、凸量子化制約をバイパスすることができるが、量子化誤差と次元当たりのビン数が一定であることによる次元の呪いによって制限される。
これらの制約に対処するために,プロトタイプの動的適応セットを用いた共形化高密度量子化回帰手法を導入する。
本手法は, 学習過程を通じて, 量子化ビンを適応的に追加, 削除, 移動させることにより, プロトタイプの集合を最適化する。
さらに,我々のコンフォメーションスキームは,最も高い確率密度の領域に着目し,有効なカバレッジ保証を提供する。
多様なデータセットと次元にわたる実験により、我々の手法は、より少ないプロトタイプとメモリを活用しながら、より高次元のスケーラビリティを確保しながら、カバー範囲とロバスト性を高めた高品質な予測領域を一貫して達成できることを確認した。
コードはhttps://github.com/batuceng/max_quantile で公開されている。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
本稿では,高次元量子化予測のための確率論的機械学習手法を提案する。
擬似ベイズ的フレームワークとスケールした学生tとランゲヴィン・モンテカルロを併用して効率的な計算を行う。
その効果はシミュレーションや実世界のデータを通じて検証され、そこでは確立された頻繁な手法やベイズ的手法と競合する。
論文 参考訳(メタデータ) (2024-09-03T08:01:01Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
量子回帰(Quantile Regression)は、単一の条件量子を近似する方法を提供する。
QRロス関数の最小化は、非交差量子化を保証しない。
任意の数の量子を予測するための汎用的なディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-30T15:35:21Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
本稿では,分散量子レグレッションにおいて,厳密なスケーリング条件を伴わずに最適な推論を実現する方法の課題に対処する。
この問題は、ローカル(各データソース)とグローバルな目的関数に適用される二重平滑化アプローチによって解決される。
局所的および大域的滑らか化パラメータの微妙な組み合わせに依存するにもかかわらず、量子回帰モデルは完全にパラメトリックである。
論文 参考訳(メタデータ) (2021-10-25T17:09:59Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
Quantification [15.94100899123465]
それぞれの入力に対する真の条件量子化を予測するモデルは、全ての量子化レベルにおいて、基礎となる不確実性の正しい効率的な表現を示す。
現在の量子化法は、いわゆるピンボール損失の最適化に重点を置いている。
これらの欠点に対処する新しい量子的手法を開発した。
論文 参考訳(メタデータ) (2020-11-18T23:51:23Z) - Variable Skipping for Autoregressive Range Density Estimation [84.60428050170687]
深部自己回帰モデルを用いた距離密度推定を高速化する手法である可変スキップについて述べる。
可変スキップは、10-100$timesの効率向上をもたらすことを示す。
論文 参考訳(メタデータ) (2020-07-10T19:01:40Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。