Multilevel Monte Carlo methods for simulating forward-backward stochastic differential equations using neural networks
- URL: http://arxiv.org/abs/2411.01306v1
- Date: Sat, 02 Nov 2024 16:55:56 GMT
- Title: Multilevel Monte Carlo methods for simulating forward-backward stochastic differential equations using neural networks
- Authors: Oliver Sheridan-Methven,
- Abstract summary: We introduce forward-backward differential equations, highlighting the connection between solutions of these and solutions of partial differential equations.
We review the technique of approximating solutions to high dimensional partial differential equations using neural networks, and similarly approximate solutions of differential equations using multilevel Monte Carlo.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce forward-backward stochastic differential equations, highlighting the connection between solutions of these and solutions of partial differential equations, related by the Feynman-Kac theorem. We review the technique of approximating solutions to high dimensional partial differential equations using neural networks, and similarly approximate solutions of stochastic differential equations using multilevel Monte Carlo. Connecting the multilevel Monte Carlo method with the neural network framework using the setup established by E et al. and Raissi, we replicate many of their empirical results, and provide novel numerical analyses to produce strong error bounds for the specific framework of Raissi. Our results bound the overall strong error in terms of the maximum of the discretisation error and the neural network's approximation error. Our analyses are pivotal for applications of multilevel Monte Carlo, for which we propose suitable frameworks to exploit the variance structures of the multilevel estimators we elucidate. Also, focusing on the loss function advocated by Raissi, we expose the limitations of this, highlighting and quantifying its bias and variance. Lastly, we propose various avenues of further research which we anticipate should offer significant insight and speed improvements.
Related papers
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
This paper introduces a novel neural network-based approach to solving the Monge-Ampere equation with the transport boundary condition.
We leverage multilayer perceptron networks to learn approximate solutions by minimizing a loss function that encompasses the equation's residual, boundary conditions, and convexity constraints.
arXiv Detail & Related papers (2024-10-25T11:54:00Z) - Bayesian polynomial neural networks and polynomial neural ordinary
differential equations [4.550705124365277]
Symbolic regression with neural networks and neural ordinary differential equations (ODEs) are powerful approaches for equation recovery of many science and engineering problems.
These methods provide point estimates for the model parameters and are currently unable to accommodate noisy data.
We address this challenge by developing and validating the following inference methods: the Laplace approximation, Markov Chain Monte Carlo sampling methods, and Bayesian variational inference.
arXiv Detail & Related papers (2023-08-17T05:42:29Z) - Combining Monte Carlo and Tensor-network Methods for Partial
Differential Equations via Sketching [1.3144299362395915]
We propose a framework for solving high-dimensional partial differential equations with tensor networks.
Our approach uses Monte-Carlo simulations to update the solution and re-estimates the new solution from samples as a tensor-network.
arXiv Detail & Related papers (2023-05-29T05:06:50Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Variational Monte Carlo Approach to Partial Differential Equations with
Neural Networks [0.0]
We develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions.
Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters.
For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches.
arXiv Detail & Related papers (2022-06-04T07:36:35Z) - Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control [27.38625075499457]
We present a scalable deep learning approach to solve opinion dynamics optimal control problems with mean field term coupling in the dynamics and cost function.
The proposed framework opens up the possibility for future applications on extremely large-scale problems.
arXiv Detail & Related papers (2022-04-05T22:07:32Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
Recursive auxiliary-variable inference (RAVI) is a new framework for exploiting flexible proposals.
RAVI generalizes and unifies several existing methods for inference with expressive expressive families.
We show RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference.
arXiv Detail & Related papers (2022-03-05T23:52:40Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - A Unified View of Stochastic Hamiltonian Sampling [18.300078015845262]
This work revisits the theoretical properties of Hamiltonian differential equations (SDEs) for posterior sampling.
We study the two types of errors that arise from numerical SDE simulation: the discretization error and the error due to noisy gradient estimates.
arXiv Detail & Related papers (2021-06-30T16:50:11Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.