論文の概要: Convolutional Filtering with RKHS Algebras
- arxiv url: http://arxiv.org/abs/2411.01341v1
- Date: Sat, 02 Nov 2024 18:53:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:39.292291
- Title: Convolutional Filtering with RKHS Algebras
- Title(参考訳): RKHS代数を用いた畳み込みフィルタ
- Authors: Alejandro Parada-Mayorga, Leopoldo Agorio, Alejandro Ribeiro, Juan Bazerque,
- Abstract要約: 我々は、Kernel Hilbert Spaces(RKHS)の再生のための畳み込み信号処理とニューラルネットワークの理論を開発する。
任意の RKHS が複数の代数的畳み込みモデルの形式的定義を可能にすることを示す。
本研究では,無人航空機による実測値から無線通信を予測できる実データに関する数値実験について述べる。
- 参考スコア(独自算出の注目度): 110.06688302593349
- License:
- Abstract: In this paper, we develop a generalized theory of convolutional signal processing and neural networks for Reproducing Kernel Hilbert Spaces (RKHS). Leveraging the theory of algebraic signal processing (ASP), we show that any RKHS allows the formal definition of multiple algebraic convolutional models. We show that any RKHS induces algebras whose elements determine convolutional operators acting on RKHS elements. This approach allows us to achieve scalable filtering and learning as a byproduct of the convolutional model, and simultaneously take advantage of the well-known benefits of processing information in an RKHS. To emphasize the generality and usefulness of our approach, we show how algebraic RKHS can be used to define convolutional signal models on groups, graphons, and traditional Euclidean signal spaces. Furthermore, using algebraic RKHS models, we build convolutional networks, formally defining the notion of pointwise nonlinearities and deriving explicit expressions for the training. Such derivations are obtained in terms of the algebraic representation of the RKHS. We present a set of numerical experiments on real data in which wireless coverage is predicted from measurements captured by unmaned aerial vehicles. This particular real-life scenario emphasizes the benefits of the convolutional RKHS models in neural networks compared to fully connected and standard convolutional operators.
- Abstract(参考訳): 本稿では,Kernel Hilbert Spaces (RKHS) 再生のための畳み込み信号処理とニューラルネットワークの一般化理論を開発する。
代数的信号処理理論(ASP)を利用して、任意のRKHSが複数の代数的畳み込みモデルの形式的定義を可能にすることを示す。
RKHS は任意の元が RKHS の元に作用する畳み込み作用素を決定する代数を誘導することを示す。
このアプローチにより、畳み込みモデルの副産物としてスケーラブルなフィルタリングと学習を実現でき、同時にRKHSにおける情報処理の利点を活用できる。
提案手法の一般化と有用性を強調するため,代数的RKHSを用いて群,グラフン,および従来のユークリッド信号空間上の畳み込み信号モデルを定義する方法を示す。
さらに、代数的RKHSモデルを用いて畳み込みネットワークを構築し、ポイントワイド非線形性の概念を正式に定義し、トレーニングのための明示的な表現を導出する。
このような導出は、RKHSの代数的表現の観点から得られる。
本研究では,無人航空機による実測値から無線通信を予測できる実データに関する数値実験について述べる。
この特定の実生活シナリオは、完全に連結された標準的な畳み込み演算子と比較して、ニューラルネットワークにおける畳み込みRKHSモデルの利点を強調している。
関連論文リスト
- Stability Analysis of Equivariant Convolutional Representations Through The Lens of Equivariant Multi-layered CKNs [0.0]
我々は、グループ同変カーネルネットワーク(CKN)を構築し、理論的に解析する。
本研究では, 微分同相作用下でのそのような同相CNNの安定性解析について検討する。
目標は、再現されたカーネルヒルベルト空間(RKHS)のレンズを通して、同値CNNの帰納バイアスの幾何学を分析することである。
論文 参考訳(メタデータ) (2024-08-08T07:31:22Z) - A Sampling Theory Perspective on Activations for Implicit Neural
Representations [73.6637608397055]
Inlicit Neural Representations (INR) は、コンパクトで微分可能なエンティティとして信号の符号化で人気を博している。
サンプリング理論の観点からこれらの活性化を包括的に分析する。
本研究により,INRと併用されていないシンクアクティベーションは,信号符号化に理論的に最適であることが判明した。
論文 参考訳(メタデータ) (2024-02-08T05:52:45Z) - Learning in RKHM: a $C^*$-Algebraic Twist for Kernel Machines [13.23700804428796]
カーネルヒルベルト空間(RKHS)とベクトル値RKHS(vvRKHS)の再現学習は30年以上にわたって研究されてきた。
我々は、RKHSとvvRKHSの教師あり学習をカーネルHilbert $C*$-module (RKHM) の再生に一般化することで、新しいツイストを提供する。
我々は、$C*$-algebraの観点から、有効正定値カーネルを構築する方法を示す。
論文 参考訳(メタデータ) (2022-10-21T10:23:54Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Learning primal-dual sparse kernel machines [10.230121160034674]
伝統的に、カーネル法は、学習問題の解は再生されたカーネルヒルベルト空間(RKHS)にマッピングされたデータの線形結合として得られるという代表者定理に依存している。
本稿では,RKHS の要素が必ずしもトレーニングセットの要素に対応するとは限らない元データ空間において,前像分解を持つ解を求めることを提案する。
勾配に基づく手法は入力空間のスパース要素の最適化に重きを置き、原始空間と双対空間の両方でカーネルベースのモデルを得ることができる。
論文 参考訳(メタデータ) (2021-08-27T09:38:53Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
本研究では,非可換畳み込みニューラルネットワークの一般化について検討する。
非可換畳み込み構造は作用素空間上の変形に対して安定であることを示す。
論文 参考訳(メタデータ) (2021-08-23T04:22:58Z) - Action Recognition with Kernel-based Graph Convolutional Networks [14.924672048447338]
learning graph convolutional networks(gcns)は、ディープラーニングを任意の非正規ドメインに一般化することを目的としている。
再生カーネルヒルベルト空間(RKHS)における空間グラフ畳み込みを実現する新しいGCNフレームワークを提案する。
gcnモデルの特長は、学習グラフフィルタの受容野のノードと入力グラフのノードを明示的に認識せずに畳み込みを実現する能力にも関係しています。
論文 参考訳(メタデータ) (2020-12-28T11:02:51Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic Neural Network (AlgNN) は、代数的信号モデルと関連する各層のカスケードで構成されている。
畳み込みという形式的な概念を用いるアーキテクチャは、シフト演算子の特定の選択を超えて、いかに安定であるかを示す。
論文 参考訳(メタデータ) (2020-10-22T09:10:16Z) - Algebraic Neural Networks: Stability to Deformations [179.55535781816343]
可換代数を用いた代数ニューラルネットワーク(AlgNN)について検討する。
AlgNNはユークリッド畳み込みニューラルネットワーク、グラフニューラルネットワーク、グループニューラルネットワークなどの多様なアーキテクチャを統合する。
論文 参考訳(メタデータ) (2020-09-03T03:41:38Z) - Analysis via Orthonormal Systems in Reproducing Kernel Hilbert
$C^*$-Modules and Applications [12.117553807794382]
本稿では,Hilbert $C*$-module (RKHM) を再現した新しいデータ解析フレームワークを提案する。
ヒルベルト$C*$-加群における正則系の構築の理論的妥当性を示し、RKHMにおける正則化の具体的な手順を導出する。
我々は、RKHMカーネルの主成分分析とペロン・フロベニウス作用素を用いた力学系の解析を一般化するためにそれらを適用する。
論文 参考訳(メタデータ) (2020-03-02T10:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。