論文の概要: A New Logic For Pediatric Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2411.01390v1
- Date: Sun, 03 Nov 2024 00:52:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:18.495091
- Title: A New Logic For Pediatric Brain Tumor Segmentation
- Title(参考訳): 小児脳腫瘍切除の新しい論理
- Authors: Max Bengtsson, Elif Keles, Gorkem Durak, Syed Anwar, Yuri S. Velichko, Marius G. Linguraru, Angela J. Waanders, Ulas Bagci,
- Abstract要約: 深層学習アーキテクチャを用いた小児脳腫瘍の分節化のための新しいアプローチを提案する。
PED BraTS 2024テストセットに4つの異なる腫瘍ラベルを基準としてベンチマークを行った。
我々は、最先端(SOTA)モデルに対して、我々のモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 0.5942186563711294
- License:
- Abstract: In this paper, we present a novel approach for segmenting pediatric brain tumors using a deep learning architecture, inspired by expert radiologists' segmentation strategies. Our model delineates four distinct tumor labels and is benchmarked on a held-out PED BraTS 2024 test set (i.e., pediatric brain tumor datasets introduced by BraTS). Furthermore, we evaluate our model's performance against the state-of-the-art (SOTA) model using a new external dataset of 30 patients from CBTN (Children's Brain Tumor Network), labeled in accordance with the PED BraTS 2024 guidelines. We compare segmentation outcomes with the winning algorithm from the PED BraTS 2023 challenge as the SOTA model. Our proposed algorithm achieved an average Dice score of 0.642 and an HD95 of 73.0 mm on the CBTN test data, outperforming the SOTA model, which achieved a Dice score of 0.626 and an HD95 of 84.0 mm. Our results indicate that the proposed model is a step towards providing more accurate segmentation for pediatric brain tumors, which is essential for evaluating therapy response and monitoring patient progress.
- Abstract(参考訳): 本稿では,専門的な放射線学者のセグメンテーション戦略に触発されて,深層学習アーキテクチャを用いた小児脳腫瘍のセグメンテーションのための新しいアプローチを提案する。
本モデルは4つの異なる腫瘍ラベルを記述し,BraTS 2024テストセット(BraTSが導入した小児脳腫瘍データセット)にベンチマークした。
さらに, CBTN (Children's Brain tumor Network) の新たな外部データセットを用いて, PED BraTS 2024ガイドラインに従って評価を行った。
セグメント化結果とPED BraTS 2023チャレンジの勝利アルゴリズムをSOTAモデルとして比較する。
提案アルゴリズムは, CBTN試験データに対して平均Diceスコア0.642, HD9573.0mmを達成し, SOTAモデルより優れ, Diceスコア0.626, HD9584.0mmを達成した。
以上の結果から,本モデルが小児脳腫瘍に対するより正確なセグメンテーションを実現するためのステップであることが示唆された。
関連論文リスト
- Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging [5.289163833023648]
本研究は3つの課題において,新たな腫瘍症例に対する深層学習に基づくアンサンブル戦略を提案する。
特に、最先端のnnU-NetとSwin UNETRモデルの出力を領域的にアンサンブルする。
PEDでは第1位,MENでは第3位,METでは第4位であった。
論文 参考訳(メタデータ) (2024-09-12T17:24:50Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
この研究は、MRIとグラフニューラルネットワーク(GNN)の進歩を生かして、効率的な脳腫瘍要約モデルを導入する。
このモデルは、ボリュームMRIを領域隣接グラフ(RAG)として表現し、グラフ注意ネットワーク(GAT)を通して腫瘍の種類を特定することを学習する。
論文 参考訳(メタデータ) (2023-02-11T04:30:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation [2.324913904215885]
アーキテクチャは、3つのDeep Layer Aggregationニューラルネットワークからなるカスケードで構成されており、各ステージは、機能マップと前のステージの確率を使用して応答を詳細化する。
神経画像データは、一般公開されたBrain Tumor (BraTS) 2020チャレンジデータセットの一部です。
実験では, 腫瘍, コア腫瘍, 造影腫瘍全例に対して, 0.8858, 0.8297, 0.7900, ハウスドルフ距離 5.32 mm, 22.32 mm, 20.44 mmのdiceスコアを得た。
論文 参考訳(メタデータ) (2021-01-02T17:59:30Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。