Small-scale Hamiltonian optimization of interpolating operators for Lagrangian lattice quantum field theory
- URL: http://arxiv.org/abs/2411.02185v1
- Date: Mon, 04 Nov 2024 15:39:30 GMT
- Title: Small-scale Hamiltonian optimization of interpolating operators for Lagrangian lattice quantum field theory
- Authors: Artur Avkhadiev, Lena Funcke, Karl Jansen, Stefan Kühn, Phiala E. Shanahan,
- Abstract summary: Lattice quantum field theory calculations may potentially combine the advantages of Hamiltonian formulations with the scalability and control of conventional Lagrangian frameworks.
This work investigates the role of both factors in the application of Hamiltonian-optimized interpolating operator constructions for the conventional Lagrangian framework.
- Score: 0.2995925627097048
- License:
- Abstract: Lattice quantum field theory calculations may potentially combine the advantages of Hamiltonian formulations with the scalability and control of conventional Lagrangian frameworks. However, such hybrid approaches need to consider (1) the differences in renormalized coupling values between the two formulations, and (2) finite-volume and discretization effects when the Hamiltonian component of the calculation is characterized by a smaller volume or coarser lattice spacing than the Lagrangian component. This work investigates the role of both factors in the application of Hamiltonian-optimized interpolating operator constructions for the conventional Lagrangian framework. The numerical investigation is realized for the pseudoscalar meson in the Schwinger model, using tensor-network and Monte-Carlo calculations. It is demonstrated that tensor-network-optimized constructions are robust to both (1) and (2). In particular, accurate optimized constructions for the pseudoscalar meson can be obtained from calculations with a smaller number of Hamiltonian lattice sites, even when the meson mass itself receives significant finite-volume corrections. To the extent that these results generalize to theories with more complicated spectra, the method holds promise for near-term applications in large-scale calculations of lattice quantum field theory.
Related papers
- An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension [0.0]
We propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension.
Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations.
arXiv Detail & Related papers (2024-09-06T17:59:24Z) - Assessing the query complexity limits of quantum phase estimation using symmetry aware spectral bounds [0.0]
computational cost of quantum algorithms for physics and chemistry is closely linked to the spectrum of the Hamiltonian.
We introduce a hierarchy of symmetry-aware spectral bounds that provide a unified understanding of the performance of quantum phase estimation algorithms.
arXiv Detail & Related papers (2024-03-07T18:38:49Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term
quantum simulator: variational quantum optimization, confinement, and
topological order [0.0]
We propose an implementation of a two-dimensional $mathbbZ$ lattice gauge theory model on a shallow quantum circuit.
The ground state preparation is numerically analyzed on a small lattice with a variational quantum algorithm.
Our work shows that variational quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations of lattice gauge theories.
arXiv Detail & Related papers (2021-12-22T10:45:33Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Tensor lattice field theory with applications to the renormalization
group and quantum computing [0.0]
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
arXiv Detail & Related papers (2020-10-13T16:46:34Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Entanglement Hamiltonian of the 1+1-dimensional free, compactified boson
conformal field theory [0.0]
Entanglement or modular Hamiltonians play a crucial role in the investigation of correlations in quantum field theories.
In this work, we perform the spectrum of the entanglement Hamiltonian for the free compactified boson CFT over a finite spatial interval.
arXiv Detail & Related papers (2020-04-29T17:49:28Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.