論文の概要: A Coverage-Guided Testing Framework for Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2411.02450v1
- Date: Sun, 03 Nov 2024 08:07:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:41.854793
- Title: A Coverage-Guided Testing Framework for Quantum Neural Networks
- Title(参考訳): 量子ニューラルネットワークのためのカバレッジガイド型テストフレームワーク
- Authors: Minqi Shao, Jianjun Zhao,
- Abstract要約: 量子ニューラルネットワーク(QNN)は、量子コンピューティングとニューラルネットワークを組み合わせて機械学習モデルを改善する。
本稿では,QNNの状態探索を体系的に評価するために,QNNを対象としたテストカバレッジ基準のセットであるQCovを提案する。
- 参考スコア(独自算出の注目度): 1.7101498519540597
- License:
- Abstract: Quantum Neural Networks (QNNs) combine quantum computing and neural networks, leveraging quantum properties such as superposition and entanglement to improve machine learning models. These quantum characteristics enable QNNs to potentially outperform classical neural networks in tasks such as quantum chemistry simulations, optimization problems, and quantum-enhanced machine learning. However, they also introduce significant challenges in verifying the correctness and reliability of QNNs. To address this, we propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration during testing, focusing on superposition and entanglement. These criteria help detect quantum-specific defects and anomalies. Extensive experiments on benchmark datasets and QNN models validate QCov's effectiveness in identifying quantum-specific defects and guiding fuzz testing, thereby improving QNN robustness and reliability.
- Abstract(参考訳): 量子ニューラルネットワーク(QNN)は量子コンピューティングとニューラルネットワークを組み合わせて、重ね合わせや絡み合いといった量子特性を活用して機械学習モデルを改善する。
これらの量子特性により、量子化学シミュレーション、最適化問題、量子強化機械学習などのタスクにおいて、QNNは古典的なニューラルネットワークよりも優れた性能を発揮する。
しかし、彼らはまた、QNNの正確性と信頼性を検証する上で重要な課題も導入している。
そこで本研究では,テスト中のQNN状態探索を体系的に評価し,重ね合わせと絡み合いに着目したQNNを対象としたテストカバレッジ基準であるQCovを提案する。
これらの基準は、量子固有の欠陥や異常を検出するのに役立つ。
ベンチマークデータセットとQNNモデルに関する大規模な実験は、量子固有の欠陥を特定し、ファジテストを誘導するQCovの有効性を評価し、QNNの堅牢性と信頼性を向上させる。
関連論文リスト
- QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
量子ニューラルネットワーク(QNN)は、ディープラーニング(DL)原理と量子力学の基本理論を組み合わせて、量子加速による機械学習タスクを実現する。
QNNシステムは従来の量子ソフトウェアと古典的なDLシステムとは大きく異なり、QNNテストにとって重要な課題となっている。
QNNシステムにおける潜在的誤動作を明らかにするために,量子絡み合い誘導型対向テストフレームワークであるQuanTestを提案する。
論文 参考訳(メタデータ) (2024-02-20T12:11:28Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
分割並列化QCNN(sp-QCNN)と呼ばれる新しいアーキテクチャを提案する。
量子回路を翻訳対称性に基づいて分割することにより、sp-QCNNはキュービット数を増やすことなく従来のQCNNを実質的に並列化することができる。
本稿では,sp-QCNNが従来のQCNNと同等の分類精度を達成でき,必要な測定資源を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2023-06-12T18:00:08Z) - ResQNets: A Residual Approach for Mitigating Barren Plateaus in Quantum
Neural Networks [0.0]
量子ニューラルネットワーク(QNN)におけるバレンプラトー問題は、QNNの実践的な成功を妨げる重要な課題である。
本稿では、この問題に対処するための解として、残留量子ニューラルネットワーク(ResQNet)を導入する。
論文 参考訳(メタデータ) (2023-05-05T13:33:43Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T02:07:00Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。