論文の概要: Scalable Quantum Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2209.12372v1
- Date: Mon, 26 Sep 2022 02:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 17:07:53.122559
- Title: Scalable Quantum Convolutional Neural Networks
- Title(参考訳): スケーラブルな量子畳み込みニューラルネットワーク
- Authors: Hankyul Baek, Won Joon Yun, Joongheon Kim
- Abstract要約: 我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.261689483681145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the beginning of the noisy intermediate-scale quantum (NISQ) era,
quantum neural network (QNN) has recently emerged as a solution for the
problems that classical neural networks cannot solve. Moreover, QCNN is
attracting attention as the next generation of QNN because it can process
high-dimensional vector input. However, due to the nature of quantum computing,
it is difficult for the classical QCNN to extract a sufficient number of
features. Motivated by this, we propose a new version of QCNN, named scalable
quantum convolutional neural network (sQCNN). In addition, using the fidelity
of QC, we propose an sQCNN training algorithm named reverse fidelity training
(RF-Train) that maximizes the performance of sQCNN.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)時代の始まりとして、量子ニューラルネットワーク(QNN)が、古典的ニューラルネットワークでは解決できない問題の解決策として最近登場した。
さらに、QCNNは高次元ベクトル入力を処理できる次世代QNNとして注目されている。
しかしながら、量子コンピューティングの性質上、古典的なqcnnが十分な数の特徴を抽出することは困難である。
そこで本研究では,スケーラブルな量子畳み込みニューラルネットワーク(sqcnn)という,新しいバージョンのqcnnを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
関連論文リスト
- A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
QCNNの時間と精度は、異なる条件下での古典的なCNNやANNモデルと比較される。
この分析により、QCNNは、特定のアプリケーションにおける精度と効率の点で、古典的なCNNとANNのモデルより優れている可能性が示されている。
論文 参考訳(メタデータ) (2023-07-17T02:38:04Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
近いうちに量子優位性のあるアプリケーションを見つけるために,新しい種類の量子リカレントニューラルネットワーク(QRNN)を提案する。
我々のQRNNは、量子デバイスのコヒーレント時間に関してアルゴリズムの要求を大幅に削減できる、停滞した方法でQRBを積み重ねることによって構築されます。
数値実験により,我々のQRNNは古典的RNNと最先端QNNモデルに対する予測(分類)精度が向上し,逐次学習が可能となった。
論文 参考訳(メタデータ) (2023-02-07T04:04:39Z) - 3D Scalable Quantum Convolutional Neural Networks for Point Cloud Data
Processing in Classification Applications [10.90994913062223]
量子畳み込みニューラルネットワーク(QCNN)は、分類アプリケーションにおけるポイントクラウドデータ処理のために提案される。
分類アプリケーションにおけるポイントクラウドデータ処理のための3DスケーラブルQCNN(sQCNN-3D)を提案する。
論文 参考訳(メタデータ) (2022-10-18T10:14:03Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
本研究では,次元減少と機能回帰のためのエンドツーエンドの量子ニューラルネットワークであるTTN-VQCを提案する。
また,polyak-Lojasiewicz (PL) 条件を利用してTTN-VQCの最適化特性を特徴付ける。
論文 参考訳(メタデータ) (2022-06-08T06:54:07Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。