論文の概要: Differentiability and Approximation of Probability Functions under Gaussian Mixture Models: A Bayesian Approach
- arxiv url: http://arxiv.org/abs/2411.02721v1
- Date: Tue, 05 Nov 2024 01:36:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:59:10.803571
- Title: Differentiability and Approximation of Probability Functions under Gaussian Mixture Models: A Bayesian Approach
- Title(参考訳): ガウス混合モデルに基づく確率関数の微分可能性と近似:ベイズ的アプローチ
- Authors: Gonzalo Contador, Pedro Pérez-Aros, Emilio Vilches,
- Abstract要約: ガウス混合モデルに関連する確率関数について検討する。
条件付き確率分布を用いて確率関数をユークリッド球面上の積分として表現する。
パラメータ空間とユークリッド球面上のランダムサンプリングを用いて確率関数を近似する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this work, we study probability functions associated with Gaussian mixture models. Our primary focus is on extending the use of spherical radial decomposition for multivariate Gaussian random vectors to the context of Gaussian mixture models, which are not inherently spherical but only conditionally so. Specifically, the conditional probability distribution, given a random parameter of the random vector, follows a Gaussian distribution, allowing us to apply Bayesian analysis tools to the probability function. This assumption, together with spherical radial decomposition for Gaussian random vectors, enables us to represent the probability function as an integral over the Euclidean sphere. Using this representation, we establish sufficient conditions to ensure the differentiability of the probability function and provide and integral representation of its gradient. Furthermore, leveraging the Bayesian decomposition, we approximate the probability function using random sampling over the parameter space and the Euclidean sphere. Finally, we present numerical examples that illustrate the advantages of this approach over classical approximations based on random vector sampling.
- Abstract(参考訳): 本研究では,ガウス混合モデルに関連する確率関数について検討する。
我々の主な焦点は、多変量ガウス乱ベクトルに対する球面ラジアル分解の使用を、本質的に球面的ではないが条件的にのみそうであるガウス混合モデルの文脈に拡張することである。
具体的には、確率ベクトルのランダムなパラメータが与えられた条件付き確率分布はガウス分布に従っており、ベイズ解析ツールを確率関数に適用することができる。
この仮定はガウス確率ベクトルの球面ラジアル分解とともに、確率函数をユークリッド球面上の積分として表現することができる。
この表現を用いて、確率関数の微分可能性を保証するのに十分な条件を確立し、その勾配の表現と積分を与える。
さらに、ベイズ分解を利用して、パラメータ空間とユークリッド球面上のランダムサンプリングを用いて確率関数を近似する。
最後に、ランダムなベクトルサンプリングに基づく古典近似に対するこのアプローチの利点を示す数値的な例を示す。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Characteristic Function of the Tsallis $q$-Gaussian and Its Applications
in Measurement and Metrology [0.0]
ツァリス$q$-ガウス分布は標準ガウス分布の強力な一般化である。
本稿では,独立な$q$-ガウス確率変数の線形結合の特性について述べる。
これは不確実性解析のためのモンテカルロ法に代わる計算手順を提供する。
論文 参考訳(メタデータ) (2023-03-15T13:42:35Z) - Simplex Random Features [53.97976744884616]
ソフトマックスおよびガウスカーネルの非バイアス近似のための新しいランダム特徴(RF)機構であるSimplex Random Features (SimRFs)を提案する。
我々は,これらのカーネルの非バイアス推定値に対して,SimRFが最小平均二乗誤差(MSE)を提供することを示す。
ポイントワイドカーネル推定,非パラメトリック分類,スケーラブルトランスフォーマーなどの設定において,SimRFによる一貫したゲインを示す。
論文 参考訳(メタデータ) (2023-01-31T18:53:39Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
本稿では,確率的B'ezier曲線上に構築された新しい確率的シーケンスモデルを提案する。
混合密度ネットワークと組み合わせることで、平均場変動近似を必要とせずにベイズ条件推論を行うことができる。
このモデルは歩行者の軌跡予測に使われ、生成した予測はGP前でも機能する。
論文 参考訳(メタデータ) (2022-05-03T19:49:57Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Riemannian Gaussian distributions, random matrix ensembles and diffusion
kernels [0.0]
対称空間のランダム行列型における確率密度関数の限界値を計算する方法を示す。
また、確率密度関数が、リー群のワイルチャンバーにおける非交差過程を記述するカルリン・マクグレガー型の拡散核の特別な場合であることを示す。
論文 参考訳(メタデータ) (2020-11-27T11:41:29Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Multiplicative Gaussian Particle Filter [18.615555573235987]
フィルタ問題における近似推論のためのサンプリングに基づく新しい手法を提案する。
有限個の状態からなる条件分布を粒子フィルタで近似するのではなく、連続関数の集合から重み付けされた関数の和で分布を近似する。
論文 参考訳(メタデータ) (2020-02-29T09:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。