論文の概要: Bridging Personalization and Control in Scientific Personalized Search
- arxiv url: http://arxiv.org/abs/2411.02790v2
- Date: Wed, 30 Apr 2025 19:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.119301
- Title: Bridging Personalization and Control in Scientific Personalized Search
- Title(参考訳): 科学的パーソナライズ検索におけるブリッジングパーソナライズと制御
- Authors: Sheshera Mysore, Garima Dhanania, Kishor Patil, Surya Kallumadi, Andrew McCallum, Hamed Zamani,
- Abstract要約: 本研究では、パーソナライズされたランキングを積極的に制御できるパーソナライズされた検索モデルを提案する。
我々のモデルであるCtrlCEは、ユーザの過去のインタラクションから構築された編集可能なメモリを付加した、新しいクロスエンコーダモデルである。
- 参考スコア(独自算出の注目度): 53.7152408217116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized search is a problem where models benefit from learning user preferences from per-user historical interaction data. The inferred preferences enable personalized ranking models to improve the relevance of documents for users. However, personalization is also seen as opaque in its use of historical interactions and is not amenable to users' control. Further, personalization limits the diversity of information users are exposed to. While search results may be automatically diversified this does little to address the lack of control over personalization. In response, we introduce a model for personalized search that enables users to control personalized rankings proactively. Our model, CtrlCE, is a novel cross-encoder model augmented with an editable memory built from users' historical interactions. The editable memory allows cross-encoders to be personalized efficiently and enables users to control personalized ranking. Next, because all queries do not require personalization, we introduce a calibrated mixing model which determines when personalization is necessary. This enables users to control personalization via their editable memory only when necessary. To thoroughly evaluate CtrlCE, we demonstrate its empirical performance in four domains of science, its ability to selectively request user control in a calibration evaluation of the mixing model, and the control provided by its editable memory in a user study.
- Abstract(参考訳): パーソナライズド検索は、モデルがユーザ毎の履歴データからユーザの好みを学習することの恩恵を受ける問題である。
推測された選好により、パーソナライズされたランキングモデルにより、ユーザのドキュメントの関連性を改善することができる。
しかし、パーソナライゼーションは歴史的相互作用の利用において不透明であり、ユーザのコントロールには適さない。
さらに、パーソナライゼーションは、ユーザが露出する情報の多様性を制限する。
検索結果は自動的に多様化されるが、パーソナライゼーションの制御の欠如に対処することはほとんどない。
そこで本研究では,パーソナライズされたランキングを積極的に制御できるパーソナライズされた検索モデルを提案する。
我々のモデルであるCtrlCEは、ユーザの過去のインタラクションから構築された編集可能なメモリを付加した、新しいクロスエンコーダモデルである。
編集可能なメモリにより、クロスエンコーダを効率的にパーソナライズすることができ、ユーザーはパーソナライズされたランキングを制御できる。
次に、全てのクエリがパーソナライズを必要としないため、パーソナライズが必要なタイミングを決定するキャリブレーションミキシングモデルを導入する。
これにより、ユーザーは必要に応じて編集可能なメモリを介してパーソナライズを制御することができる。
CtrlCEを徹底的に評価するために、科学の4分野における経験的性能、ミキシングモデルの校正評価におけるユーザ制御を選択的に要求する能力、ユーザスタディにおける編集可能なメモリによって提供される制御を実証した。
関連論文リスト
- Personalized Language Models via Privacy-Preserving Evolutionary Model Merging [57.161917758405465]
大規模言語モデル(LLM)におけるパーソナライゼーションは、個々のユーザまたはユーザグループの好みに合わせてモデルをカスタマイズすることを目指している。
進化的アルゴリズム(PriME)によるプライバシ保護モデルマージを提案する。
PriMEは、ユーザのプライバシを保護しながら、タスク固有のメトリクスを直接最適化するために、勾配のないメソッドを使用している。
論文 参考訳(メタデータ) (2025-03-23T09:46:07Z) - PersonaBench: Evaluating AI Models on Understanding Personal Information through Accessing (Synthetic) Private User Data [76.21047984886273]
パーソナライゼーションは、AIアシスタント、特に個々のユーザーと連携するプライベートAIモデルのコンテキストにおいて重要である。
このようなデータのセンシティブな性質のため、AIモデルのユーザ理解能力を評価するためのデータセットは公開されていない。
多様なユーザプロファイルを作成する合成データ生成パイプラインと、人間の活動をシミュレートするプライベートドキュメントを導入する。
論文 参考訳(メタデータ) (2025-02-28T00:43:35Z) - When Machine Learning Gets Personal: Understanding Fairness of Personalized Models [5.002195711989324]
機械学習におけるパーソナライズには、人口統計学や医療データなどの個人属性を組み込むことで、モデルを個々のユーザにカスタマイズすることが含まれる。
パーソナライゼーションは予測精度を向上させることができるが、バイアスを増幅し、説明可能性を減らすこともできる。
本研究は、個人化が予測精度と説明品質の両方に与える影響を評価する統一的な枠組みを導入する。
論文 参考訳(メタデータ) (2025-02-05T00:17:33Z) - Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-04T01:46:49Z) - Optimizing Data Delivery: Insights from User Preferences on Visuals, Tables, and Text [59.68239795065175]
ユーザが質問を提示するユーザスタディを実施し、何を見たいのかを尋ねます。
ユーザの個人的特性が、彼らが好むデータ出力に影響を与えることを確認するために、このデータを使用します。
論文 参考訳(メタデータ) (2024-11-12T00:24:31Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF)は、プライバシを保護する新しいレコメンデーションフレームワークの開発に焦点を当てた新興分野である。
本稿では,ユーザのパーソナライズされた情報を潜在変数とニューラルモデルに同時に保存することで,新たなパーソナライズされたFedCF手法を提案する。
提案フレームワークを効果的に学習するために,ユーザインタラクションベクトル再構成と欠落した値予測を統合することで,特殊変分オートエンコーダ(VAE)タスクとして問題をモデル化する。
論文 参考訳(メタデータ) (2024-08-16T05:49:14Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
ユーザパーソナライズのためのNLPモデルの構築と評価のための新しいデータセットであるPEFT-Uベンチマークを紹介する。
多様なユーザ中心タスクのコンテキストにおいて、LLMを効率よくパーソナライズし、ユーザ固有の嗜好に適合させるという課題について検討する。
論文 参考訳(メタデータ) (2024-07-25T14:36:18Z) - HYDRA: Model Factorization Framework for Black-Box LLM Personalization [36.21602686505842]
パーソナライゼーションは現代のインテリジェントシステムにおいて重要な研究領域として現れてきた。
ブラックボックスの大規模言語モデル(LLM)が示した驚くべき数ショットの能力にもかかわらず、それらのモデルパラメータの本質的な不透明さは、生成された出力を個々の期待と整合させる上で大きな課題である。
本研究では,履歴データからユーザ固有の行動パターンを抽出し,パーソナライズされた生成を提供するモデル因子化フレームワークHYDRAを提案する。
論文 参考訳(メタデータ) (2024-06-05T03:08:46Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
本稿では,タスクコンテキスト間の一般化を改善するための階層的な構築プロセスからなる,シンプルで効果的なフレームワークであるPersona-DBを紹介する。
応答予測の評価において,Persona-DB は精度を著しく低減した検索サイズで維持する上で,より優れたコンテキスト効率を示す。
我々の実験は、ユーザーが極めて少ないデータを持つ場合、コールドスタートシナリオで10%以上の顕著な改善が示されていることも示している。
論文 参考訳(メタデータ) (2024-02-16T20:20:43Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
大規模言語モデル(LLM)のパーソナライゼーションはますます重要になっている。
1つのPEFT Per User (OPPU) は、パーソナライズされたパラメータ効率の微調整(PEFT)モジュールを使用して、ユーザ固有の行動パターンと好みを保存する。
OPPUは、LaMPベンチマークの7つのタスクで既存のプロンプトベースのメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-06T21:03:52Z) - Incremental user embedding modeling for personalized text classification [12.381095398791352]
個々のユーザプロファイルとインタラクション履歴は、現実世界のアプリケーションでカスタマイズされたエクスペリエンスを提供する上で重要な役割を果たす。
本稿では,ユーザの最近のインタラクション履歴を動的に統合したインクリメンタルなユーザ埋め込みモデリング手法を提案する。
Redditデータセットに基づくパーソナライズされた多クラス分類タスクに適用することで,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-13T17:33:35Z) - Personalized Adaptive Meta Learning for Cold-start User Preference
Prediction [46.65783845757707]
パーソナライズされたユーザーの嗜好予測における共通の課題は、コールドスタート問題である。
メジャーユーザとマイナーユーザの両方を考慮するために,新たなパーソナライズ型適応型メタラーニング手法を提案する。
本手法は, マイノリティとメジャーユーザの両方に対して, 最先端の手法を劇的に向上させる。
論文 参考訳(メタデータ) (2020-12-22T05:48:08Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。