Influence of field mass and acceleration on entanglement generation
- URL: http://arxiv.org/abs/2411.02994v1
- Date: Tue, 05 Nov 2024 10:54:01 GMT
- Title: Influence of field mass and acceleration on entanglement generation
- Authors: Yongjie Pan, Jiatong Yan, Sansheng Yang, Baocheng Zhang,
- Abstract summary: We find that the maximum entanglement between detectors does not exhibit a strict monotonic dependence on detector acceleration.
Novelly, our findings indicate the absence of a strong anti-Unruh effect in (3+1)-dimensional massive scalar fields.
- Score: 0.0
- License:
- Abstract: We explore the entanglement dynamics of two detectors undergoing uniform acceleration and circular motion within a massive scalar field, while also investigating the influence of the anti-Unruh effect on entanglement harvesting. Contrary to the conventional understanding of the weak anti-Unruh effect, where entanglement typically increases, we observe that the maximum entanglement between detectors does not exhibit a strict monotonic dependence on detector acceleration. Particularly at low accelerations, fluctuations in the entanglement maxima show a strong correlation with fluctuations in detector transition rates.We also find that the maximum entanglement of detectors tends to increase with smaller field mass. Novelly, our findings indicate the absence of a strong anti-Unruh effect in (3+1)-dimensional massive scalar fields. Instead, thermal effects arising from acceleration contribute to a decrease in the detector entanglement maximum.
Related papers
- Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Atom interferometry with coherent enhancement of Bragg pulse sequences [41.94295877935867]
We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold atom interferometer.
We highlight a new mechanism of destructive interference of the losses leading to a sizeable efficiency enhancement of the beam splitters.
arXiv Detail & Related papers (2023-05-16T15:00:05Z) - Entanglement Harvesting of Inertially Moving Unruh-DeWitt Detectors in
Minkowski Spacetime [0.0]
We investigate the effects of relative motion on entanglement harvesting by considering a pair of Unruh-Dewitt detectors moving at arbitrary, but independent, velocities.
We find that the Negativity is a function of the relative velocity of the detectors, as well as their energy gaps and minimal separation.
arXiv Detail & Related papers (2022-05-29T19:09:05Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Influence of acceleration on multi-body entangled quantum states [0.0]
We show that the multi-body quantum entanglement can be increased with the acceleration.
This kind of entanglement increase can lead to the improvement of the sensitivity phase.
arXiv Detail & Related papers (2020-09-11T00:14:45Z) - Field assisted extraction and swelling of quantum coherence for moving
Unruh-DeWitt detectors [0.0]
We study the effects of motion for an Unruh-DeWitt detector, modeled as a two-level system, on the amount of coherence extracted.
We observe that compared to a detector at rest, for certain values of the initial energy of the field and the interaction duration, the amount is larger for both a detector moving with a constant speed or uniform acceleration.
arXiv Detail & Related papers (2020-06-24T17:48:41Z) - Unruh effect for detectors in superposition of accelerations [0.0]
The Unruhh effect is the phenomenon that accelerated observers detect particles even when inertial observers experience the vacuum state.
Here we consider the Unruhh effect for a detector that excitation a quantum supertime of different trajectories in Minkowski space.
arXiv Detail & Related papers (2020-03-27T19:02:34Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.