Quantum Mpemba effect of Localization in the dissipative Mosaic model
- URL: http://arxiv.org/abs/2411.03734v1
- Date: Wed, 06 Nov 2024 07:55:42 GMT
- Title: Quantum Mpemba effect of Localization in the dissipative Mosaic model
- Authors: J. W. Dong, H. F. Mu, M. Qin, H. T. Cui,
- Abstract summary: We study the dissipative dynamics of single excitations in open quantum systems.
The energy level $E_cinfty$ exhibits a global periodicity in real configuration, which acts to inhibit dissipation.
When the system deviates from $E_cinfty$, the quasi-disorder sets in, leading to increased dissipative effects.
- Score: 0.0
- License:
- Abstract: The quantum Mpemba effect in open quantum systems has been extensively studied, but a comprehensive understanding of this phenomenon remains elusive. In this paper, we conduct an analytical investigation of the dissipative dynamics of single excitations in the Mosaic model. Surprisingly, we discover that the presence of asymptotic mobility edge, denoted as $E_c^{\infty}$, can lead to unique dissipation behavior, serving as a hallmark of quantum Mpemba effect. Specially, it is found that the energy level $E_c^{\infty}$ exhibits a global periodicity in real configuration, which acts to inhibit dissipation in the system. Conversely, when the system deviates from $E_c^{\infty}$, the quasidisorder sets in, leading to increased dissipative effects due to the broken of periodicity. Furthermore, we find that the rate of dissipation is closely linked to the localization of the initial state. As a result, the quantum Mpemba effect can be observed clearly by a measure of localization.
Related papers
- Quantum Mpemba effects in many-body localization systems [3.625262223613696]
We show that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium.
We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization.
arXiv Detail & Related papers (2024-08-14T18:00:47Z) - Observation of quantum strong Mpemba effect [11.375210055373365]
We report the first experiment, as far as we know,about the strong Mpemba effect in a single trapped ion system.
Our work provides an efficient strategy to exponentially accelerate relaxations of quantum system to their stationary state.
It could open up the door to engineer a wide range of dissipative quantum systems.
arXiv Detail & Related papers (2024-01-29T08:25:34Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Reaction-limited quantum reaction-diffusion dynamics [0.0]
We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice.
By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference play a crucial role in these systems.
arXiv Detail & Related papers (2022-09-20T15:14:52Z) - Universal scaling at a pre-thermal dark state [0.0]
We discuss the universal dynamical scaling after a sudden quench of the non-Hermitian $O(N)$ model Hamiltonian.
While universality is generally spoiled by non-Hermiticity, we find that for a given set of internal parameters short-time scaling behaviour is restored with an initial slip profoundly different from that of closed quantum systems.
arXiv Detail & Related papers (2021-12-28T15:11:45Z) - Exponentially accelerated approach to stationarity in Markovian open
quantum systems through the Mpemba effect [0.0]
We show that the relaxation dynamics of Markovian open quantum systems can be accelerated exponentially by devising an optimal unitary transformation.
This initial "rotation" is engineered in such a way that the state of the quantum system becomes to the slowest decaying dynamical mode.
We illustrate our idea by showing how to achieve an exponential speed-up in the convergence to stationarity in Dicke models.
arXiv Detail & Related papers (2021-03-08T19:02:31Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.