Processing and Decoding Rydberg Leakage Error with MBQC
- URL: http://arxiv.org/abs/2411.04664v3
- Date: Tue, 18 Feb 2025 07:14:04 GMT
- Title: Processing and Decoding Rydberg Leakage Error with MBQC
- Authors: Cheng-Cheng Yu, Zi-Han Chen, Yu-Hao Deng, Ming-Cheng Chen, Chao-Yang Lu, Jian-Wei Pan,
- Abstract summary: We present a novel approach to manage Rydberg leakage errors in measurement-based quantum computation.
We leverage the inherent structure of topological cluster states and final leakage detection information to locate propagated errors from Rydberg leakage.
- Score: 5.154331853803125
- License:
- Abstract: Neutral atom array has emerged as a promising platform for quantum computation due to its high-fidelity two-qubit gate, arbitrary connectivity and remarkable scalability. However, achieving fault-tolerant quantum computing with neutral atom necessitates careful consideration of the errors inherent to these systems. One typical error is the leakage from Rydberg states during the implementation of multi-qubit gates, which induces two-qubit error chain and degrades the error distance. To address this, researchers have proposed an erasure conversion protocol that employs fast leakage detection and continuous atomic replacement to convert leakage errors into benign erasure errors. While this method achieves a favorable error distance de = d, its applicability is restricted to certain atom species. In this work, we present a novel approach to manage Rydberg leakage errors in measurement-based quantum computation (MBQC). From a hardware perspective, we utilize practical experimental techniques along with an adaptation of the Pauli twirling approximation (PTA) to mitigate the impacts of leakage errors, which propagate similarly to Pauli errors without degrading the error distance. From a decoding perspective, we leverage the inherent structure of topological cluster states and final leakage detection information to locate propagated errors from Rydberg leakage. This approach eliminates the need for mid-circuit leakage detection, while maintaining an error distance de = d and achieving a high threshold of 3.4% per CZ gate for pure leakage errors under perfect final leakage detection. Furthermore, in the presence of additional Pauli errors, our protocol demonstrates comparable logical error rates to the erasure conversion method within a reasonable range of physical errors.
Related papers
- A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction [79.52464132360618]
Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task.
We introduce a novel approach based on error detector-corrector framework.
Our detector is designed to yield two error detection results, each characterized by high precision and recall.
arXiv Detail & Related papers (2024-09-06T09:26:45Z) - Surface Code Stabilizer Measurements for Rydberg Atoms [0.0]
We consider stabilizer measurements for surface codes with neutral atoms.
We identify gate protocols that minimize logical error rates in the presence of a fundamental error source.
arXiv Detail & Related papers (2024-05-26T16:33:05Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Benchmarking quantum logic operations relative to thresholds for fault
tolerance [0.02171671840172762]
We use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor.
We show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set.
arXiv Detail & Related papers (2022-07-18T17:41:58Z) - Experimental demonstration of continuous quantum error correction [0.0]
We implement a continuous quantum bit-flip correction code in a multi-qubit architecture.
We achieve an average bit-flip detection efficiency of up to 91%.
Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture.
arXiv Detail & Related papers (2021-07-23T18:00:55Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Removing leakage-induced correlated errors in superconducting quantum
error correction [1.8397027011844889]
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated.
Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states.
We find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number.
arXiv Detail & Related papers (2021-02-11T17:11:11Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.