Conformalized Credal Regions for Classification with Ambiguous Ground Truth
- URL: http://arxiv.org/abs/2411.04852v2
- Date: Mon, 27 Jan 2025 21:41:03 GMT
- Title: Conformalized Credal Regions for Classification with Ambiguous Ground Truth
- Authors: Michele Caprio, David Stutz, Shuo Li, Arnaud Doucet,
- Abstract summary: In classification problems, credal regions are a tool that is able to provide provable guarantees under realistic assumptions.<n>We show that credal regions can be directly constructed using conformal methods.<n>We empirically verify our findings on both synthetic and real datasets.
- Score: 37.03352666927449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An open question in \emph{Imprecise Probabilistic Machine Learning} is how to empirically derive a credal region (i.e., a closed and convex family of probabilities on the output space) from the available data, without any prior knowledge or assumption. In classification problems, credal regions are a tool that is able to provide provable guarantees under realistic assumptions by characterizing the uncertainty about the distribution of the labels. Building on previous work, we show that credal regions can be directly constructed using conformal methods. This allows us to provide a novel extension of classical conformal prediction to problems with ambiguous ground truth, that is, when the exact labels for given inputs are not exactly known. The resulting construction enjoys desirable practical and theoretical properties: (i) conformal coverage guarantees, (ii) smaller prediction sets (compared to classical conformal prediction regions) and (iii) disentanglement of uncertainty sources (epistemic, aleatoric). We empirically verify our findings on both synthetic and real datasets.
Related papers
- Credal Prediction based on Relative Likelihood [24.307076055306148]
We propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood.<n>We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques.
arXiv Detail & Related papers (2025-05-28T13:20:20Z) - A Generic Framework for Conformal Fairness [7.073917553857755]
We formalize textitConformal Fairness, a notion of fairness using conformal predictors.<n>We provide a theoretically well-founded algorithm and associated framework to control for the gaps in coverage between different sensitive groups.
arXiv Detail & Related papers (2025-05-22T01:41:12Z) - SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
We propose a novel approach termed Selective Conformal Uncertainty (SConU)
We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.
Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
arXiv Detail & Related papers (2025-04-19T03:01:45Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.
We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.
Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Conformalized Credal Set Predictors [12.549746646074071]
Credal sets are sets of probability distributions that are considered as candidates for an imprecisely known ground-truth distribution.
We make use of conformal prediction for learning credal set predictors.
We demonstrate the applicability of our method to natural language inference.
arXiv Detail & Related papers (2024-02-16T14:30:12Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Confident Sinkhorn Allocation for Pseudo-Labeling [40.883130133661304]
Semi-supervised learning is a critical tool in reducing machine learning's dependence on labeled data.
This paper studies theoretically the role of uncertainty to pseudo-labeling and proposes Confident Sinkhorn Allocation (CSA)
CSA identifies the best pseudo-label allocation via optimal transport to only samples with high confidence scores.
arXiv Detail & Related papers (2022-06-13T02:16:26Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
We analyze a data-driven procedure for obtaining empirically reliable approximate conditional coverage.
We demonstrate the potential for substantial (and otherwise unknowable) under-coverage with split-conformal alternatives with marginal coverage guarantees.
arXiv Detail & Related papers (2022-05-28T02:59:05Z) - MD-split+: Practical Local Conformal Inference in High Dimensions [0.5439020425819]
MD-split+ is a practical local conformal approach that creates X partitions based on localized model performance.
We discuss how our local partitions philosophically align with expected behavior from an unattainable conditional conformal inference approach.
arXiv Detail & Related papers (2021-07-07T15:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.