LLMs as Research Tools: A Large Scale Survey of Researchers' Usage and Perceptions
- URL: http://arxiv.org/abs/2411.05025v1
- Date: Wed, 30 Oct 2024 04:25:23 GMT
- Title: LLMs as Research Tools: A Large Scale Survey of Researchers' Usage and Perceptions
- Authors: Zhehui Liao, Maria Antoniak, Inyoung Cheong, Evie Yu-Yen Cheng, Ai-Heng Lee, Kyle Lo, Joseph Chee Chang, Amy X. Zhang,
- Abstract summary: Large language models (LLMs) have led many researchers to consider their usage for scientific work.
We present the first large-scale survey of 816 verified research article authors.
We find that 81% of researchers have already incorporated LLMs into different aspects of their research workflow.
- Score: 20.44227547555244
- License:
- Abstract: The rise of large language models (LLMs) has led many researchers to consider their usage for scientific work. Some have found benefits using LLMs to augment or automate aspects of their research pipeline, while others have urged caution due to risks and ethical concerns. Yet little work has sought to quantify and characterize how researchers use LLMs and why. We present the first large-scale survey of 816 verified research article authors to understand how the research community leverages and perceives LLMs as research tools. We examine participants' self-reported LLM usage, finding that 81% of researchers have already incorporated LLMs into different aspects of their research workflow. We also find that traditionally disadvantaged groups in academia (non-White, junior, and non-native English speaking researchers) report higher LLM usage and perceived benefits, suggesting potential for improved research equity. However, women, non-binary, and senior researchers have greater ethical concerns, potentially hindering adoption.
Related papers
- Towards Evaluation Guidelines for Empirical Studies involving LLMs [6.174354685766166]
Large language models (LLMs) have changed the software engineering research landscape.
This paper contributes the first set of guidelines for such studies.
Our goal is to start a discussion in the software engineering research community to reach a common understanding of what our community standards are for high-quality empirical studies involving LLMs.
arXiv Detail & Related papers (2024-11-12T09:35:23Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - What is the Role of Large Language Models in the Evolution of Astronomy Research? [0.0]
ChatGPT and other state-of-the-art large language models (LLMs) are rapidly transforming multiple fields.
These models, commonly trained on vast datasets, exhibit human-like text generation capabilities.
arXiv Detail & Related papers (2024-09-30T12:42:25Z) - Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - Mapping the Increasing Use of LLMs in Scientific Papers [99.67983375899719]
We conduct the first systematic, large-scale analysis across 950,965 papers published between January 2020 and February 2024 on the arXiv, bioRxiv, and Nature portfolio journals.
Our findings reveal a steady increase in LLM usage, with the largest and fastest growth observed in Computer Science papers.
arXiv Detail & Related papers (2024-04-01T17:45:15Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - From Prompt Engineering to Prompt Science With Human in the Loop [12.230632679443364]
This article presents a new methodology inspired by codebook construction through qualitative methods to address that.
We show how a set of researchers can work through a rigorous process of labeling, deliberating, and documenting to remove subjectivity and bring transparency and replicability to prompt generation process.
arXiv Detail & Related papers (2024-01-01T01:37:36Z) - Judgments of research co-created by generative AI: experimental evidence [1.8275108630751844]
We test whether delegating parts of the research process to LLMs leads people to distrust and devalue researchers and scientific output.
People judged delegating to an LLM as less acceptable than delegating to a human.
We discuss how this devaluation might transfer into the underreporting of generative AI use.
arXiv Detail & Related papers (2023-05-03T15:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.