Leveraging Transfer Learning and Multiple Instance Learning for HER2 Automatic Scoring of H\&E Whole Slide Images
- URL: http://arxiv.org/abs/2411.05028v1
- Date: Tue, 05 Nov 2024 09:44:48 GMT
- Title: Leveraging Transfer Learning and Multiple Instance Learning for HER2 Automatic Scoring of H\&E Whole Slide Images
- Authors: Rawan S. Abdulsadig, Bryan M. Williams, Nikolay Burlutskiy,
- Abstract summary: This work is to examine the potential of transfer learning on the performance of deep learning models pre-trained on (i) IHC images, (ii) H&E images and (iii) non-medical images.
It was found that embedding models pre-trained on H&E images consistently outperformed the others, resulting in an average AUCROC value of $0.622$ across the 4 HER2 scores.
- Score: 1.0923877073891446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expression of human epidermal growth factor receptor 2 (HER2) is an important biomarker in breast cancer patients who can benefit from cost-effective automatic Hematoxylin and Eosin (H\&E) HER2 scoring. However, developing such scoring models requires large pixel-level annotated datasets. Transfer learning allows prior knowledge from different datasets to be reused while multiple-instance learning (MIL) allows the lack of detailed annotations to be mitigated. The aim of this work is to examine the potential of transfer learning on the performance of deep learning models pre-trained on (i) Immunohistochemistry (IHC) images, (ii) H\&E images and (iii) non-medical images. A MIL framework with an attention mechanism is developed using pre-trained models as patch-embedding models. It was found that embedding models pre-trained on H\&E images consistently outperformed the others, resulting in an average AUC-ROC value of $0.622$ across the 4 HER2 scores ($0.59-0.80$ per HER2 score). Furthermore, it was found that using multiple-instance learning with an attention layer not only allows for good classification results to be achieved, but it can also help with producing visual indication of HER2-positive areas in the H\&E slide image by utilising the patch-wise attention weights.
Related papers
- Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification [0.0]
This study explores open questions in the application of machine learning for breast cancer detection in mammograms.
We develop models that outperform previous results for both single-view and two-view classifiers.
arXiv Detail & Related papers (2025-03-25T11:51:21Z) - Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.
Our framework introduces two key components into the common MIL model architecture.
We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
arXiv Detail & Related papers (2024-10-04T00:38:29Z) - Features Fusion for Dual-View Mammography Mass Detection [1.5146068448101746]
We propose a new model called MAMM-Net, which allows the processing of both mammography views simultaneously.
Our experiments show superior performance on the publicM dataset compared to the previous state-of-the-art model.
arXiv Detail & Related papers (2024-04-25T16:30:30Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Dual Attention Model with Reinforcement Learning for Classification of Histology Whole-Slide Images [8.404881822414898]
Digital whole slide images (WSIs) are generally captured at microscopic resolution and encompass extensive spatial data.
We propose a novel dual attention approach, consisting of two main components, both inspired by the visual examination process of a pathologist.
We show that the proposed model achieves performance better than or comparable to the state-of-the-art methods while processing less than 10% of the WSI at the highest magnification.
arXiv Detail & Related papers (2023-02-19T22:26:25Z) - Interpretable HER2 scoring by evaluating clinical Guidelines through a
weakly supervised, constrained Deep Learning Approach [0.0]
This paper focuses on the interpretability of HER2 scoring by a pathologist.
We propose a semi-automatic, two-stage deep learning approach that directly evaluates the clinical HER2 guidelines.
We achieve a performance of 0.78 in F1-score on the test set while keeping our model interpretable for the pathologist.
arXiv Detail & Related papers (2022-11-17T14:28:35Z) - Improved HER2 Tumor Segmentation with Subtype Balancing using Deep
Generative Networks [5.44130112878356]
We propose to create synthetic images with semantically-conditioned deep generative networks.
We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images.
arXiv Detail & Related papers (2022-11-11T12:05:15Z) - Multi-Scale Attention-based Multiple Instance Learning for
Classification of Multi-Gigapixel Histology Images [0.0]
We propose a deep learning pipeline for classification in histology images.
We attempt to predict the latent membrane protein 1 (LMP1) status of nasopharyngeal carcinoma (NPC) based on haematoxylin and eosin-stain (H&E) histology images.
arXiv Detail & Related papers (2022-09-07T10:14:02Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.