Quantum Speed Limit Time in two-qubit system by Dynamical Decoupling Method
- URL: http://arxiv.org/abs/2411.05180v1
- Date: Thu, 07 Nov 2024 20:48:02 GMT
- Title: Quantum Speed Limit Time in two-qubit system by Dynamical Decoupling Method
- Authors: A. Aaliray, H. Mohammadi,
- Abstract summary: This paper devotes to engineering quantum correlation in simple two-qubit system suffering dephasing via Periodic Dynamical Decoupling (PDD) method.
The results are useful for high speed quantum gate implementation application.
- Score: 0.0
- License:
- Abstract: Quantum state change can not occurs instantly, but the speed of quantum evolution is limited to an upper bound value, called quantum speed limit (QSL). Engineering QSL is an important task for quantum information and computation science and technologies. This paper devotes to engineering QSL and quantum correlation in simple two-qubit system suffering dephasing via Periodic Dynamical Decoupling (PDD) method in both Markovian and non-Markovian dynamical regimes. The results show that when decoupling pulses are applied to both qubits this method removes all undesirable effects of the dephasing process, completely. Applying the PDD on only one of the qubits also works but with lower efficiency. Additionally, ultra-high speedup of the quantum processes become possible during the pulse application period, for enough large number of pulses. The results is useful for high speed quantum gate implementation application.
Related papers
- On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
We introduce the Quantum Program Scheduling Problem (QPSP) to improve the utility efficiency of quantum resources.
Specifically, a quantum program scheduling method concerning the circuit width, number of measurement shots, and submission time of quantum programs is proposed to reduce the execution latency.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Accelerated adiabatic passage of a single electron spin qubit in quantum
dots [1.5818487311072416]
We experimentally demonstrate the transitionless quantum driving (TLQD) of the shortcuts to adiabaticity in gate-defined semiconductor quantum dots (QDs)
For a given efficiency of quantum state transfer, the acceleration can be more than twofold.
The modified TLQD is proposed and demonstrated in experiment by enlarging the width of the counter-diabatic drivings.
arXiv Detail & Related papers (2023-12-20T15:56:31Z) - Pulse-efficient quantum machine learning [0.0]
We investigate the impact of pulse-efficient circuits on quantum machine learning algorithms.
We find that pulse-efficient transpilation vastly reduces average circuit durations.
We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.
arXiv Detail & Related papers (2022-11-02T18:00:01Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
arXiv Detail & Related papers (2021-12-13T00:49:15Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.