論文の概要: CACA Agent: Capability Collaboration based AI Agent
- arxiv url: http://arxiv.org/abs/2403.15137v1
- Date: Fri, 22 Mar 2024 11:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:38:51.140005
- Title: CACA Agent: Capability Collaboration based AI Agent
- Title(参考訳): CACA Agent: 機能コラボレーションベースのAIエージェント
- Authors: Peng Xu, Haoran Wang, Chuang Wang, Xu Liu,
- Abstract要約: 本稿ではCACAエージェント(Capability Collaboration based AI Agent)を提案する。
CACA Agentは、単一のLLMへの依存を減らすだけでなく、AI Agentを実装するための一連のコラボレーティブ機能を統合する。
本稿ではCACAエージェントの動作とアプリケーションシナリオの拡張について説明する。
- 参考スコア(独自算出の注目度): 18.84686313298908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As AI Agents based on Large Language Models (LLMs) have shown potential in practical applications across various fields, how to quickly deploy an AI agent and how to conveniently expand the application scenario of AI agents has become a challenge. Previous studies mainly focused on implementing all the reasoning capabilities of AI agents within a single LLM, which often makes the model more complex and also reduces the extensibility of AI agent functionality. In this paper, we propose CACA Agent (Capability Collaboration based AI Agent), using an open architecture inspired by service computing. CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM, but also enhancing the extensibility of both the planning abilities and the tools available to AI agents. Utilizing the proposed system, we present a demo to illustrate the operation and the application scenario extension of CACA Agent.
- Abstract(参考訳): LLM(Large Language Models)に基づくAIエージェントは、さまざまな分野における実践的なアプリケーションの可能性を示しているため、AIエージェントの迅速なデプロイ方法と、AIエージェントのアプリケーションシナリオを便利に拡張する方法が課題となっている。
これまでの研究は主に、単一のLLM内でAIエージェントのすべての推論能力を実装することに焦点を当てていた。
本稿では,CACAエージェント(Capability Collaboration based AI Agent)を提案する。
CACA Agentは、単一のLLMへの依存を減らすだけでなく、計画能力とAIエージェントが利用できるツールの拡張性を向上させるため、AIエージェントを実装するための一連の協調機能を統合する。
提案システムを利用して,CACAエージェントの動作と応用シナリオの拡張を説明する。
関連論文リスト
- YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks [16.443149180969776]
Augmented Reality (AR)ヘッドウェアは、日々の手続き的なタスクを解く際のユーザエクスペリエンスを一意に改善することができる。
このようなAR機能は、AIエージェントがユーザーのマルチモーダル機能に関連するアクションを見て耳を傾けるのに役立つ。
一方、AIエージェントのプロアクティビティは、人間が観察されたタスクのミスを検出し、修正するのに役立つ。
論文 参考訳(メタデータ) (2025-01-16T08:06:02Z) - SOP-Agent: Empower General Purpose AI Agent with Domain-Specific SOPs [9.117180930298813]
汎用AIエージェントは、ドメイン固有の知識と人間の専門知識を効率的に活用するのに苦労する。
ドメイン固有のエージェントを構築するための新しいフレームワークであるSOP-agent(Standard Operational Procedure-Guided Agent)を紹介する。
SOPエージェントは優れた汎用性を示し、汎用エージェントフレームワークよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-01-16T06:14:58Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としており、人間の作業量を削減し、顧客への影響を最小限にする。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、エンドツーエンドとマルチタスクの自動化を可能にすることで、AIOpsに革命をもたらしている。
マイクロサービスクラウド環境をデプロイし、障害を注入し、ワークロードを生成し、テレメトリデータをエクスポートするフレームワークであるAIOPSLABを紹介します。
論文 参考訳(メタデータ) (2025-01-12T04:17:39Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。