Dynamic parameterized quantum circuits: expressive and barren-plateau free
- URL: http://arxiv.org/abs/2411.05760v2
- Date: Tue, 12 Nov 2024 18:49:16 GMT
- Title: Dynamic parameterized quantum circuits: expressive and barren-plateau free
- Authors: Abhinav Deshpande, Marcel Hinsche, Sona Najafi, Kunal Sharma, Ryan Sweke, Christa Zoufal,
- Abstract summary: We propose and study a class of dynamic parameterized quantum circuit architectures.
These are parameterized circuits containing intermediate measurements and feedforward operations.
These features make the proposed architectures promising candidates for a variety of applications.
- Score: 0.25128687379089687
- License:
- Abstract: Classical optimization of parameterized quantum circuits is a widely studied methodology for the preparation of complex quantum states, as well as the solution of machine learning and optimization problems. However, it is well known that many proposed parameterized quantum circuit architectures suffer from drawbacks which limit their utility, such as their classical simulability or the hardness of optimization due to a problem known as "barren plateaus". We propose and study a class of dynamic parameterized quantum circuit architectures. These are parameterized circuits containing intermediate measurements and feedforward operations. In particular, we show that these architectures: 1. Provably do not suffer from barren plateaus. 2. Are expressive enough to describe arbitrarily deep unitary quantum circuits. 3. Are competitive with state of the art methods for the preparation of ground states and facilitate the representation of nontrivial thermal states. These features make the proposed architectures promising candidates for a variety of applications.
Related papers
- Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search [8.226785409557598]
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm.
In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present.
We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the
arXiv Detail & Related papers (2024-07-29T15:22:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Escaping barren plateaus in approximate quantum compiling [1.3764085113103222]
Quantum compilation provides a method to translate quantum algorithms at a high level of abstraction into their implementations as quantum circuits on real hardware.
One approach to quantum compiling is to design a parameterised circuit and to use techniques from optimisation to find the parameters that minimise the distance between the parameterised circuit and the target circuit of interest.
Here we develop and implement a set of related techniques such as they can be applied to classically assisted quantum compiling.
arXiv Detail & Related papers (2022-10-17T15:44:52Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Capacity and quantum geometry of parametrized quantum circuits [0.0]
Parametrized quantum circuits can be effectively implemented on current devices.
We evaluate the capacity and trainability of these circuits using the geometric structure of the parameter space.
Our results enhance the understanding of parametrized quantum circuits for improving variational quantum algorithms.
arXiv Detail & Related papers (2021-02-02T18:16:57Z) - Gradient-free quantum optimization on NISQ devices [0.0]
We consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning.
We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters.
arXiv Detail & Related papers (2020-12-23T10:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.