論文の概要: Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model
- arxiv url: http://arxiv.org/abs/2504.14345v1
- Date: Sat, 19 Apr 2025 16:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 01:15:47.605773
- Title: Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model
- Title(参考訳): ブラックリッターマンモデルを用いたLLM生成ビューの平均変数最適化への統合
- Authors: Youngbin Lee, Yejin Kim, Suin Kim, Yongjae Lee,
- Abstract要約: そこで本研究では,Black-Litterman フレームワークを用いた大規模言語モデル (LLM) 生成ビューのポートフォリオ最適化への統合について検討する。
提案手法は,LLMを用いて過去の価格や企業のメタデータから期待される株価のリターンを推定し,予測のばらつきを通じて不確実性を取り入れる。
実験結果から,ポートフォリオ性能に影響を及ぼす最適化予測と信頼性安定性のレベルが異なることが示唆された。
- 参考スコア(独自算出の注目度): 27.512468160410588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Portfolio optimization faces challenges due to the sensitivity in traditional mean-variance models. The Black-Litterman model mitigates this by integrating investor views, but defining these views remains difficult. This study explores the integration of large language models (LLMs) generated views into portfolio optimization using the Black-Litterman framework. Our method leverages LLMs to estimate expected stock returns from historical prices and company metadata, incorporating uncertainty through the variance in predictions. We conduct a backtest of the LLM-optimized portfolios from June 2024 to February 2025, rebalancing biweekly using the previous two weeks of price data. As baselines, we compare against the S&P 500, an equal-weighted portfolio, and a traditional mean-variance optimized portfolio constructed using the same set of stocks. Empirical results suggest that different LLMs exhibit varying levels of predictive optimism and confidence stability, which impact portfolio performance. The source code and data are available at https://github.com/youngandbin/LLM-MVO-BLM.
- Abstract(参考訳): Portfolioの最適化は、従来の平均分散モデルの感度のために課題に直面している。
Black-Littermanモデルは、投資家の見解を統合することでこれを緩和するが、これらの見解を定義することは依然として難しい。
そこで本研究では,Black-Litterman フレームワークを用いた大規模言語モデル (LLM) 生成ビューのポートフォリオ最適化への統合について検討する。
提案手法は,LLMを用いて過去の価格や企業のメタデータから期待される株価のリターンを推定し,予測のばらつきを通じて不確実性を取り入れる。
我々は,2024年6月から2025年2月まで,LLM最適化ポートフォリオのバックテストを実施し,過去2週間の価格データを用いて隔週で再バランスする。
ベースラインとして、同種のポートフォリオであるS&P 500と、同じ株セットで構築された従来型の平均分散最適化ポートフォリオを比較します。
実験結果から,ポートフォリオ性能に影響を及ぼす予測的楽観性と信頼性安定性のレベルが異なることが示唆された。
ソースコードとデータはhttps://github.com/youngandbin/LLM-MVO-BLMで公開されている。
関連論文リスト
- Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
審査員としてのLLM(Large Language Models)とLLMに基づくデータ合成は、2つの基本的なLLM駆動型データアノテーション法として登場した。
本研究では, 合成データ生成器とLCMに基づく評価器の関連性に起因するLCM-as-a-judgeの汚染問題である選好リークを明らかにする。
論文 参考訳(メタデータ) (2025-02-03T17:13:03Z) - Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
人間のフィードバックからの強化学習など、アライメント技術で微調整された大規模言語モデル(LLM)は、これまでで最も有能なAIシステムの開発に役立っている。
マージンマッチング選好最適化(MMPO)と呼ばれる手法を導入し、相対的な品質マージンを最適化し、LLMポリシーと報酬モデルを改善する。
人間とAIの両方のフィードバックデータによる実験によると、MMPOはMT-benchやRewardBenchといった一般的なベンチマークにおいて、ベースラインメソッドよりも一貫してパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-10-04T04:56:11Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
本稿では、機械学習(ML)モデルの適用、取引戦略の改善、ストックオプション予測と取引結果の最適化のための準可逆法(QRM)について紹介する。
論文 参考訳(メタデータ) (2022-11-29T04:01:16Z) - Robust Portfolio Design and Stock Price Prediction Using an Optimized
LSTM Model [0.0]
本稿では,インドにおける4つの重要な経済セクターに対して,最適リスクと固有という2つのタイプのポートフォリオを構築するための体系的なアプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTMモデルは将来の株価を予測するためにも設計されている。
論文 参考訳(メタデータ) (2022-03-02T14:15:14Z) - Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model [0.0]
本論文では,インドのNSEの5つのテーマセクターに対して,最適リスクと固有ポートフォリオを設計するためのアルゴリズム的アプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTMモデルは将来の株価を予測するために設計されている。
ポートフォリオが結成されて7ヶ月後の2021年8月3日、ポートフォリオの実際のリターンはLSTM予測リターンと比較される。
論文 参考訳(メタデータ) (2022-02-06T07:41:20Z) - Stock Portfolio Optimization Using a Deep Learning LSTM Model [1.1470070927586016]
本研究は、2016年1月1日から2020年12月31日まで、インド株式市場の9つの異なるセクターからトップ5の株価を時系列的に分析してきた。
最適ポートフォリオはこれらのセクター毎に構築されます。
各ポートフォリオの予測と実際のリターンは高く,LSTMモデルの高精度性を示している。
論文 参考訳(メタデータ) (2021-11-08T18:41:49Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。