論文の概要: Dialectal Coverage And Generalization in Arabic Speech Recognition
- arxiv url: http://arxiv.org/abs/2411.05872v3
- Date: Thu, 29 May 2025 18:48:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 15:03:33.352016
- Title: Dialectal Coverage And Generalization in Arabic Speech Recognition
- Title(参考訳): アラビア語音声認識における辞書被覆と一般化
- Authors: Amirbek Djanibekov, Hawau Olamide Toyin, Raghad Alshalan, Abdullah Alitr, Hanan Aldarmaki,
- Abstract要約: 既存のASRシステムは、多種多様な話し言葉にまたがる範囲と一般化において不足している。
アラビア語圏の様々な地域では、英語やフランス語とのコードスイッチも一般的である。
音声アラビアの複数の変種を効果的に認識するために最適化された一連のASRモデルを提案する。
- 参考スコア(独自算出の注目度): 0.6757476692230007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing robust automatic speech recognition (ASR) systems for Arabic requires effective strategies to manage its diversity. Existing ASR systems mainly cover the modern standard Arabic (MSA) variety and few high-resource dialects, but fall short in coverage and generalization across the multitude of spoken variants. Code-switching with English and French is also common in different regions of the Arab world, which challenges the performance of monolingual Arabic models. In this work, we introduce a suite of ASR models optimized to effectively recognize multiple variants of spoken Arabic, including MSA, various dialects, and code-switching. We provide open-source pre-trained models that cover data from 17 Arabic-speaking countries, and fine-tuned MSA and dialectal ASR models that include at least 11 variants, as well as multi-lingual ASR models covering embedded languages in code-switched utterances. We evaluate ASR performance across these spoken varieties and demonstrate both coverage and performance gains compared to prior models.
- Abstract(参考訳): アラビア語のための堅牢な自動音声認識(ASR)システムの開発には、その多様性を管理する効果的な戦略が必要である。
既存のASRシステムは、主に現代の標準アラビア語(MSA)の変種と、少数の高資源方言をカバーしているが、カバー範囲と多種多様な話し言葉の一般化には乏しい。
アラビア語圏の様々な地域では、英語やフランス語とのコード交換が一般的であり、モノリンガルのアラビア語のモデルの性能に挑戦している。
本研究では,MSA,各種方言,コードスイッチングなど,アラビア語の複数の変種を効果的に認識するために最適化されたASRモデル群を提案する。
我々は、アラビア語圏17カ国のデータをカバーするオープンソースの事前学習モデルと、少なくとも11の変種を含む細調整されたMSAおよび方言のASRモデル、およびコードスイッチされた発話における埋め込み言語をカバーする多言語ASRモデルを提供する。
本研究では,これらの話者種間でのASRの性能評価を行い,従来のモデルと比較して,カバレッジと性能の両立を実証した。
関連論文リスト
- Speaker Diarization for Low-Resource Languages Through Wav2vec Fine-Tuning [4.396936958546459]
我々は、専用のクルド語コーパス上で、Wav2Vec 2.0の自己教師型学習モデルを訓練する。
我々は他の言語から学んだ多言語表現に適応し、クルド語の音声的・音響的特徴を捉える。
結果は、他の未研究言語で効果的なダイアリゼーションシステムを構築するための基盤を確立する。
論文 参考訳(メタデータ) (2025-04-23T10:45:59Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
最も先進的なASRモデルの1つであるWhisperは99の言語を効果的に扱う。
しかし、ウィスパーは未確認の言語と戦っているが、それらは事前訓練には含まれていない。
本研究では,これらの関係を利用して未知言語上でのASR性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T04:05:43Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
話者分布自動音声認識(SA-ASR)は,対応する話者に文字を正確に割り当てながら音声を転写することを目的としている。
本稿では,凍結した多言語ASRモデルを用いて話者属性を転写に組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-27T09:01:08Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain [0.0]
この研究は、アラビア語における電話会話の課題に対処するために、アラビア語音声認識のための包括的なベンチマークを導入する試みである。
我々の研究は、アラビア方言の幅広い範囲を包含するだけでなく、コールベースのコミュニケーションの現実的な条件をエミュレートする堅牢なベンチマークを確立することを目的としている。
論文 参考訳(メタデータ) (2024-03-07T07:24:32Z) - The Balancing Act: Unmasking and Alleviating ASR Biases in Portuguese [5.308321515594125]
本研究は,Whisper および MMS システムの総合的な探索を目的としたものである。
調査対象は性別,年齢,肌の色,位置情報など多岐にわたる。
オーバーサンプリング技術がこのようなステレオタイプバイアスを軽減することを実証的に示す。
論文 参考訳(メタデータ) (2024-02-12T09:35:13Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - Exploring the Integration of Speech Separation and Recognition with
Self-Supervised Learning Representation [83.36685075570232]
本研究は,ASRフロントエンドとしての残響・雑音・残響シナリオにおける音声分離に関する洞察に富んだ研究である。
我々は,マルチチャネル分離法,マスクベースのビームフォーミング,複雑なスペクトルマッピング,およびASRバックエンドモデルで使用する最良の特徴について検討する。
TF-GridNetベースの複素スペクトルマッピングとWavLMベースのSSLRを併用することで、残響WHAMRテストセットにおいて2.5%のワードエラー率が得られる。
論文 参考訳(メタデータ) (2023-07-23T05:39:39Z) - MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech
Recognition [12.23416994447554]
我々はMixture-of-Language-Expert(MoLE)という多言語音声認識ネットワークを提案する。
MoLEは、任意の言語で入力された音声から言語表現を分析し、軽量な言語トークン化器で言語固有の専門家を活性化する。
信頼性に基づいて、アクティベートされた専門家と言語に依存しない専門家を集約し、言語条件の埋め込みを表現する。
論文 参考訳(メタデータ) (2023-02-27T13:26:17Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
言語固有の情報を混在させることにより,両状況に対処する新しい言語対応エンコーダ (LAE) アーキテクチャを提案する。
マンダリン・イングリッシュ・コードスウィッチ音声を用いた実験により,LAEはフレームレベルで異なる言語を識別できることが示唆された。
論文 参考訳(メタデータ) (2022-06-05T04:03:12Z) - A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition [80.87085897419982]
単一AMを用いた高精度多言語音声認識のための新しい音響モデリング手法を提案する。
提案するAMは、方言情報とその内部表現に基づいて動的に適応し、複数の方言を同時に扱うための高度適応型AMとなる。
大規模音声データセットにおける実験結果から,提案したAMは,方言固有のAMと比較して,単語誤り率(WER)が8.11%,方言固有のAMに比べて7.31%向上していることがわかった。
論文 参考訳(メタデータ) (2022-05-06T06:07:09Z) - Towards One Model to Rule All: Multilingual Strategy for Dialectal
Code-Switching Arabic ASR [11.363966269198064]
自己アテンションに基づくコンストラクタアーキテクチャを用いて,多言語対応の大規模ASRを設計する。
我々はアラビア語(Ar)、英語(En)、フランス語(Fr)を用いてシステムを訓練した。
以上の結果から,最先端のモノリンガル方言アラビア語およびコードスイッチングアラビアASRよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2021-05-31T08:20:38Z) - Accented Speech Recognition: A Survey [0.0]
本稿では,アクセント音声認識に対する現在有望なアプローチに関する調査を行う。
その結果、アクセント間のASRパフォーマンスのバイアスは、ASRのユーザとプロバイダの両方にコストがかかる。
論文 参考訳(メタデータ) (2021-04-21T20:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。