論文の概要: IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
- arxiv url: http://arxiv.org/abs/2411.06208v2
- Date: Wed, 27 Nov 2024 07:29:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:24:32.180370
- Title: IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
- Title(参考訳): IOPO:入力出力優先最適化による複雑な指示に従うLLMの強化
- Authors: Xinghua Zhang, Haiyang Yu, Cheng Fu, Fei Huang, Yongbin Li,
- Abstract要約: 本稿では,複雑な命令追従能力の向上と評価のためのベンチマークであるTRACEを紹介する。
また、入力と出力の両方の選好ペアを考慮に入れたIOPOを提案する。
ドメイン内データセットとドメイン外データセットの両方の実験により、IOPOの有効性が確認された。
- 参考スコア(独自算出の注目度): 74.34707794886751
- License:
- Abstract: In the realm of large language models (LLMs), the ability of models to accurately follow instructions is paramount as more agents and applications leverage LLMs for construction, where the complexity of instructions are rapidly increasing. However, on the one hand, there is only a certain amount of complex instruction evaluation data; on the other hand, there are no dedicated algorithms to improve the ability to follow complex instructions. To this end, this paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability, which consists of 120K training data and 1K evaluation data. Furthermore, we propose IOPO (Input-Output Preference Optimization) alignment method which takes both input and output preference pairs into consideration, where LLMs not only rapidly align with response preferences but also meticulously explore the instruction preferences. Extensive experiments on both in-domain and outof-domain datasets confirm the effectiveness of IOPO, showing 8.15%, 2.18% improvements on in-domain data and 6.29%, 3.13% on outof-domain data compared to SFT and DPO respectively.
- Abstract(参考訳): 大規模言語モデル(LLM)の分野では、命令を正確に追従するモデルの能力が最重要である。
しかし、一方では複雑な命令評価データしか存在せず、一方、複雑な命令に従う能力を改善するための専用アルゴリズムは存在しない。
そこで本研究では,120Kトレーニングデータと1K評価データからなる複雑な命令追従能力の向上と評価のためのベンチマークであるTRACEを紹介する。
さらに,入力と出力の両方の優先ペアを考慮に入れたIOPOアライメント手法を提案する。
ドメイン内データセットとドメイン外データセットの両方に対する大規模な実験により、ICOの有効性が確認され、ドメイン内データに対して8.15%、ドメイン内データに対して2.18%、ドメイン外データに対して6.29%、DPOに対して3.13%が改善した。
関連論文リスト
- Self-Supervised Prompt Optimization [16.06653117043314]
十分に設計されたプロンプトは、Large Language Model(LLM)推論能力の強化に不可欠である。
既存のプロンプト最適化手法は、地上の真実や人間による外部参照に大きく依存している。
本稿では,閉じたタスクとオープンなタスクの両方に効果的なプロンプトを発見する費用効率のよいフレームワークであるセルフ・スーパービジョン・プロンプト・最適化(SPO)を提案する。
論文 参考訳(メタデータ) (2025-02-07T17:45:16Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
そこで我々は,AITP(Aligning Instruction Tuning with Pre-training)を提案する。
8つのベンチマークで3つの完全にオープンな大規模言語モデル(LLM)上で,AITPによる一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-01-16T08:27:40Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
複雑な命令を単純なサブコンポーネントに分解し、それらを修正し、それらを新しい変種に再構成する手法を導入する。
DeMoReconに基づくFGIVデータセットは,1,773個のシード命令の微粒化を含む。
以上の結果から,FGIVを微調整したLDMは,命令追従ベンチマークと一般的な命令追従ベンチマークの両方において,大幅な性能向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T08:08:11Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented Language Model (RALMs) は、外部データストアからロングテールおよび最新の知識にアクセスすることで、パフォーマンスを向上させる。
既存のアプローチでは、LM事前トレーニングに高価な検索固有の修正が必要になるか、あるいは、最適以下のパフォーマンスをもたらすデータストアのポストホック統合を使用する必要がある。
本稿では,第3の選択肢を提供する軽量な微調整手法であるRetrieval-Augmented Dual Instruction Tuning (RA-DIT)を紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:16:26Z) - Prompt-Tuning Decision Transformer with Preference Ranking [83.76329715043205]
本稿では,環境情報取得におけるRLエージェントの誘導手法としてトラジェクトリセグメントを用いたPrompt-Tuning DTアルゴリズムを提案する。
提案手法では,ガウス分布をランダムにサンプリングしてプロンプト軌道の要素を微調整し,選好ランク関数を用いて最適化方向を求める。
我々の研究は、RLにおける迅速な調整手法の進歩に寄与し、特定の選好タスクに対して大規模RLエージェントを最適化するための有望な方向性を提供する。
論文 参考訳(メタデータ) (2023-05-16T17:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。