論文の概要: Annotative Indexing
- arxiv url: http://arxiv.org/abs/2411.06256v1
- Date: Sat, 09 Nov 2024 19:07:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:57.839807
- Title: Annotative Indexing
- Title(参考訳): 注釈索引付け
- Authors: Charles L. A. Clarke,
- Abstract要約: アノテーションインデックスは、従来の逆インデックス、列ストア、オブジェクトストア、グラフデータベースを統一し、一般化する新しいフレームワークである。
アノテーションインデックスは、知識グラフ、エンティティ、半構造化データ、ランク付けをサポートするデータベースの基盤となるインデックスフレームワークを提供することができる。
- 参考スコア(独自算出の注目度): 8.684302613224338
- License:
- Abstract: This paper introduces annotative indexing, a novel framework that unifies and generalizes traditional inverted indexes, column stores, object stores, and graph databases. As a result, annotative indexing can provide the underlying indexing framework for databases that support knowledge graphs, entity retrieval, semi-structured data, and ranked retrieval. While we primarily focus on human language data in the form of text, annotative indexing is sufficiently general to support a range of other datatypes, and we provide examples of SQL-like queries over a JSON store that includes numbers and dates. Taking advantage of the flexibility of annotative indexing, we also demonstrate a fully dynamic annotative index incorporating support for ACID properties of transactions with hundreds of multiple concurrent readers and writers.
- Abstract(参考訳): 本稿では、従来の逆インデックス、列ストア、オブジェクトストア、グラフデータベースを統一・一般化する新しいフレームワークであるアノテーションインデックスを導入する。
その結果、アノテーティブインデックスは、知識グラフ、エンティティ検索、半構造化データ、ランキング検索をサポートするデータベースの基盤となるインデックスフレームワークを提供することができる。
主にテキスト形式での人間の言語データに焦点を当てていますが、注釈インデックス化は他のデータ型をサポートするのに十分な一般性があり、数値と日付を含むJSONストア上でSQLライクなクエリの例を提供しています。
また、アノテーティブインデックスの柔軟性を活用して、数百の並列リーダとライターによるトランザクションのACIDプロパティのサポートを組み込んだ、完全に動的なアノテーティブインデックスを実証する。
関連論文リスト
- Differentially Private Learned Indexes [4.290415158471898]
我々は、暗号化されたデータベース上の述語クエリ、信頼された実行環境(TEE)によって確保されたクエリに効率よく応答する問題に対処する。
述語クエリを高速化する現代のデータベースにおける一般的な戦略は、インデックスの使用である。
残念ながら、強力なデータ依存リークのため、インデックスは暗号化されたデータベースに直接適用できない。
本研究では,よりコンパクトなDPインデックスを構築するために,機械学習モデルをインデックス構造として再利用するトレンド手法である学習指標を活用することを提案する。
論文 参考訳(メタデータ) (2024-10-28T16:04:58Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
論文 参考訳(メタデータ) (2024-06-23T05:02:21Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - LIST: Learning to Index Spatio-Textual Data for Embedding based Spatial Keyword Queries [53.843367588870585]
リスト K-kNN 空間キーワードクエリ (TkQ) は、空間的およびテキスト的関連性の両方を考慮したランキング関数に基づくオブジェクトのリストを返す。
効率的かつ効率的な指標、すなわち高品質なラベルの欠如とバランスの取れない結果を構築する上で、大きな課題が2つある。
この2つの課題に対処する新しい擬似ラベル生成手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T05:32:33Z) - How to Index Item IDs for Recommendation Foundation Models [49.425959632372425]
Recommendation foundation modelは、リコメンデーションタスクを自然言語タスクに変換することで、リコメンデーションのために大きな言語モデル(LLM)を利用する。
過剰に長いテキストや幻覚的なレコメンデーションを生成するのを避けるために、LCM互換のアイテムIDを作成することが不可欠である。
本稿では,シーケンシャルインデックス,協調インデックス,セマンティックインデックス(コンテンツベース)インデックス,ハイブリッドインデックスの4つを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:02:37Z) - Bridging the Gap Between Indexing and Retrieval for Differentiable
Search Index with Query Generation [98.02743096197402]
Differentiable Search Index (DSI) は情報検索の新たなパラダイムである。
そこで我々は, DSI-QG と呼ばれる, DSI のための簡易かつ効果的な索引付けフレームワークを提案する。
DSI-QG が元の DSI モデルより有意に優れていたことを示す。
論文 参考訳(メタデータ) (2022-06-21T06:21:23Z) - A Learned Index for Exact Similarity Search in Metric Spaces [25.330353637669386]
LIMSは、学習したインデックスを構築するために、データクラスタリングとピボットベースのデータ変換技術を使用することが提案されている。
機械学習モデルはディスク上の各データレコードの位置を近似するために開発された。
実世界のデータセットと合成データセットに関する大規模な実験は、従来の指標と比較してLIMSの優位性を示している。
論文 参考訳(メタデータ) (2022-04-21T11:24:55Z) - Learned Indexes for a Google-scale Disk-based Database [23.93643265060042]
学習したインデックスが分散ディスクベースのデータベースシステムにどのように統合できるかを示す: GoogleのBigtable。
その結果,学習インデックスの統合により,bigtableの読み取りレイテンシとスループットが大幅に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-23T05:56:45Z) - A Graph Representation of Semi-structured Data for Web Question
Answering [96.46484690047491]
本稿では、半構造化データとそれらの関係の構成要素の体系的分類に基づいて、Webテーブルとリストのグラフ表現を提案する。
本手法は,最先端のベースラインに対してF1スコアを3.90ポイント向上させる。
論文 参考訳(メタデータ) (2020-10-14T04:01:54Z) - Tsunami: A Learned Multi-dimensional Index for Correlated Data and
Skewed Workloads [29.223401893397714]
我々は,既存の学習した多次元インデックスよりも最大6倍高速なクエリ性能と最大8倍のインデックスサイズを実現する綱見を紹介した。
論文 参考訳(メタデータ) (2020-06-23T19:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。