論文の概要: Learning Interpretable Network Dynamics via Universal Neural Symbolic Regression
- arxiv url: http://arxiv.org/abs/2411.06833v1
- Date: Mon, 11 Nov 2024 09:51:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:50.802982
- Title: Learning Interpretable Network Dynamics via Universal Neural Symbolic Regression
- Title(参考訳): ユニバーサルニューラルシンボリック回帰による解釈可能なネットワークダイナミクスの学習
- Authors: Jiao Hu, Jiaxu Cui, Bo Yang,
- Abstract要約: 複雑なシステム状態のシンボリックな変化パターンを, 自動的に, 効率的に, 正確に学習できる普遍的な計算ツールを開発した。
その結果,ネットワーク力学における最先端のシンボルレグレッション手法と比較し,ツールの有効性と効率性を実証した。
地球規模の伝染病や歩行者運動を含む現実世界のシステムへの適用は、その実用性を検証する。
- 参考スコア(独自算出の注目度): 5.813728143193046
- License:
- Abstract: Discovering governing equations of complex network dynamics is a fundamental challenge in contemporary science with rich data, which can uncover the mysterious patterns and mechanisms of the formation and evolution of complex phenomena in various fields and assist in decision-making. In this work, we develop a universal computational tool that can automatically, efficiently, and accurately learn the symbolic changing patterns of complex system states by combining the excellent fitting ability from deep learning and the equation inference ability from pre-trained symbolic regression. We conduct intensive experimental verifications on more than ten representative scenarios from physics, biochemistry, ecology, epidemiology, etc. Results demonstrate the outstanding effectiveness and efficiency of our tool by comparing with the state-of-the-art symbolic regression techniques for network dynamics. The application to real-world systems including global epidemic transmission and pedestrian movements has verified its practical applicability. We believe that our tool can serve as a universal solution to dispel the fog of hidden mechanisms of changes in complex phenomena, advance toward interpretability, and inspire more scientific discoveries.
- Abstract(参考訳): 複雑なネットワーク力学の統治方程式を明らかにすることは、様々な分野における複雑な現象の形成と進化の謎のパターンとメカニズムを明らかにすることができ、意思決定を支援することができる、豊富なデータを持つ現代科学の基本的な課題である。
本研究では, 複雑な状態の記号変化パターンを自動的に, 効率よく, 正確に学習できる汎用計算ツールを開発し, ディープラーニングの優れた適合能力と事前学習された記号回帰から方程式推論能力を組み合わせることで, 複雑な状態の記号変化パターンを自動的に, 正確に学習する。
物理, 生化学, 生態学, 疫学など10以上の代表的なシナリオについて, 集中的な実験的検証を行った。
その結果,ネットワーク力学における最先端のシンボルレグレッション手法と比較し,ツールの有効性と効率性を実証した。
地球規模の伝染病や歩行者運動を含む現実世界のシステムへの適用は、その実用性を検証する。
我々のツールは、複雑な現象の変化の隠されたメカニズムの霧を排除し、解釈可能性に向けて前進し、より科学的発見を促す、普遍的な解決策として機能すると考えている。
関連論文リスト
- Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
iLED(Interpretable Learning Effective Dynamics)の新たな枠組みを提案する。
iLEDは、最先端のリカレントニューラルネットワークベースのアプローチに匹敵する精度を提供する。
その結果、iLEDフレームワークは正確な予測を生成でき、解釈可能なダイナミクスを得ることができることがわかった。
論文 参考訳(メタデータ) (2023-09-11T20:29:38Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - From Cities to Series: Complex Networks and Deep Learning for Improved
Spatial and Temporal Analytics* [0.0]
この論文は複雑なネットワークと機械学習技術を組み合わせて、パンデミック、垂直移動、およびストリートネットワークで観察される人間の現象の理解を改善する。
i) 集中治療室における流行の伝播, 天気予報, 患者モニタリングの応用により, 空間的および時間的データで観測される動的なプロセスをモデル化できる新しいニューラルネットワークアーキテクチャ, (ii) ブラジルのすべての都市間における人間の移動性の範囲におけるリンクを分析し予測するための機械学習手法を貢献する。
論文 参考訳(メタデータ) (2022-06-01T11:04:11Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
複雑なシステム力学の離散時間シミュレーション表現を学習する可能性について検討する。
この結果から,本アルゴリズムは,意味のあるイベントを持つ複数のフィールドにおいて,複雑なネットワークダイナミクスをデータ効率よくキャプチャできることがわかった。
論文 参考訳(メタデータ) (2022-05-04T21:33:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。