A Hyperspectral Imaging Dataset and Methodology for Intraoperative Pixel-Wise Classification of Metastatic Colon Cancer in the Liver
- URL: http://arxiv.org/abs/2411.06969v1
- Date: Mon, 11 Nov 2024 13:17:55 GMT
- Title: A Hyperspectral Imaging Dataset and Methodology for Intraoperative Pixel-Wise Classification of Metastatic Colon Cancer in the Liver
- Authors: Ivica Kopriva, Dario Sitnik, Laura-Isabelle Dion-Bertrand, Marija Milković Periša, Mirko Hadžija, Marijana Popović Hadžija,
- Abstract summary: Hyperspectral imaging holds significant potential for transforming the field of computational pathology.
There is currently a shortage of pixel-wise annotated HSI data necessary for training deep learning (DL) models.
We present a database consisted of 27 HSIs of hematoxylin-eosin stained frozen sections, collected from 14 patients with colon adenocarcinoma metastasized to the liver.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyperspectral imaging (HSI) holds significant potential for transforming the field of computational pathology. However, there is currently a shortage of pixel-wise annotated HSI data necessary for training deep learning (DL) models. Additionally, the number of HSI-based research studies remains limited, and in many cases, the advantages of HSI over traditional RGB imaging have not been conclusively demonstrated, particularly for specimens collected intraoperatively. To address these challenges we present a database consisted of 27 HSIs of hematoxylin-eosin stained frozen sections, collected from 14 patients with colon adenocarcinoma metastasized to the liver. It is aimed to validate pixel-wise classification for intraoperative tumor resection. The HSIs were acquired in the spectral range of 450 to 800 nm, with a resolution of 1 nm, resulting in images of 1384x1035 pixels. Pixel-wise annotations were performed by three pathologists. To overcome challenges such as experimental variability and the lack of annotated data, we combined label-propagation-based semi-supervised learning (SSL) with spectral-spatial features extracted by: the multiscale principle of relevant information (MPRI) method and tensor singular spectrum analysis method. Using only 1% of labeled pixels per class the SSL-MPRI method achieved a micro balanced accuracy (BACC) of 0.9313 and a micro F1-score of 0.9235 on the HSI dataset. The performance on corresponding RGB images was lower, with a micro BACC of 0.8809 and a micro F1-score of 0.8688. These improvements are statistically significant. The SSL-MPRI approach outperformed six DL architectures trained with 63% of labeled pixels. Data and code are available at: https://github.com/ikopriva/ColonCancerHSI.
Related papers
- SAMSA: Segment Anything Model Enhanced with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation [5.9804425273111095]
We introduce SAMSA, a novel interactive segmentation framework that combines an RGB foundation model with spectral analysis.<n>Performance evaluation on publicly available datasets has shown 81.0% 1-click and 93.4% 5-click DICE.<n>Our approach enables seamless integration of datasets with different spectral characteristics, providing a flexible framework for hyperspectral medical image analysis.
arXiv Detail & Related papers (2025-07-31T15:49:57Z) - Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency [1.4991956341367338]
We propose an approach for style-content disentanglement using instance normalization and instance selective whitening (ISW) for improved domain generalization.
We evaluate our approach on two datasets: EndoUDA Barrett's Esophagus and EndoUDA polyps, and compare its performance with three state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-09-19T04:10:04Z) - Wound Tissue Segmentation in Diabetic Foot Ulcer Images Using Deep Learning: A Pilot Study [5.397013836968946]
We have created a DFUTissue dataset for the research community to evaluate wound tissue segmentation algorithms.
The dataset contains 110 images with tissues labeled by wound experts and 600 unlabeled images.
Due to the limited amount of annotated data, our framework consists of both supervised learning (SL) and semi-supervised learning (SSL) phases.
arXiv Detail & Related papers (2024-06-23T05:01:51Z) - Efficient subtyping of ovarian cancer histopathology whole slide images
using active sampling in multiple instance learning [2.038893829552157]
Discriminative Region Active Sampling for Multiple Instance Learning (DRAS-MIL) is a computationally efficient slide classification method using attention scores to focus sampling on highly discriminative regions.
We show that DRAS-MIL can achieve similar classification performance to exhaustive slide analysis, with a 3-fold cross-validated AUC of 0.8679.
Our approach uses at most 18% as much memory as the standard approach, while taking 33% of the time when evaluating on a GPU and only 14% on a CPU alone.
arXiv Detail & Related papers (2023-02-17T13:28:06Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Multi-Scale Attention-based Multiple Instance Learning for
Classification of Multi-Gigapixel Histology Images [0.0]
We propose a deep learning pipeline for classification in histology images.
We attempt to predict the latent membrane protein 1 (LMP1) status of nasopharyngeal carcinoma (NPC) based on haematoxylin and eosin-stain (H&E) histology images.
arXiv Detail & Related papers (2022-09-07T10:14:02Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - COVIDLite: A depth-wise separable deep neural network with white balance
and CLAHE for detection of COVID-19 [1.1139113832077312]
COVIDLite is a combination of white balance followed by Contrast Limited Adaptive Histogram Equalization ( CLAHE) and depth-wise separable convolutional neural network (DSCNN)
The proposed COVIDLite method resulted in improved performance in comparison to vanilla DSCNN with no pre-processing.
The proposed method achieved higher accuracy of 99.58% for binary classification, whereas 96.43% for multiclass classification and out-performed various state-of-the-art methods.
arXiv Detail & Related papers (2020-06-19T02:30:34Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.