論文の概要: Universal Response and Emergence of Induction in LLMs
- arxiv url: http://arxiv.org/abs/2411.07071v1
- Date: Mon, 11 Nov 2024 15:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:50.224260
- Title: Universal Response and Emergence of Induction in LLMs
- Title(参考訳): LLMにおける誘導の普遍応答と創発
- Authors: Niclas Luick,
- Abstract要約: 残水流の弱いシングルトーケン摂動に対する応答を探索し, LLM内の誘導挙動の出現について検討した。
LLMは、摂動強度の変化の下で、その応答がスケール不変な、頑健で普遍的な状態を示す。
その結果,LLM内のコンポーネントの集合的相互作用に関する知見が得られ,大規模回路解析のベンチマークとして機能することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While induction is considered a key mechanism for in-context learning in LLMs, understanding its precise circuit decomposition beyond toy models remains elusive. Here, we study the emergence of induction behavior within LLMs by probing their response to weak single-token perturbations of the residual stream. We find that LLMs exhibit a robust, universal regime in which their response remains scale-invariant under changes in perturbation strength, thereby allowing us to quantify the build-up of token correlations throughout the model. By applying our method, we observe signatures of induction behavior within the residual stream of Gemma-2-2B, Llama-3.2-3B, and GPT-2-XL. Across all models, we find that these induction signatures gradually emerge within intermediate layers and identify the relevant model sections composing this behavior. Our results provide insights into the collective interplay of components within LLMs and serve as a benchmark for large-scale circuit analysis.
- Abstract(参考訳): 誘導はLLMにおける文脈内学習の鍵となるメカニズムと考えられているが、おもちゃモデル以外の正確な回路分解の理解はいまだ解明されていない。
そこで本研究では, LLM内の誘導挙動の出現について, 残留流の弱いシングルトーケン摂動に対する応答を推定することにより検討した。
LLMは、摂動強度の変化の下でその応答がスケール不変な、頑健で普遍的な状態を示し、それによって、モデル全体のトークン相関の蓄積を定量化できる。
本手法を適用し, Gemma-2-2B, Llama-3.2-3B, GPT-2-XLの残留流中の誘導挙動のシグネチャを観察した。
すべてのモデルにおいて、これらの帰納的シグネチャは中間層内で徐々に出現し、この振る舞いを構成する関連するモデルセクションを特定する。
その結果,LLM内のコンポーネントの集合的相互作用に関する知見が得られ,大規模回路解析のベンチマークとして機能することがわかった。
関連論文リスト
- Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting [40.78026627009521]
強化学習(Reinforcement Learning、RL)は、大規模言語モデル(LLM)知識を逐次意思決定タスクと整合させるための有望なアプローチである。
テキスト環境下でのRL学習後の定式化を促進するために,LLMの感度を解析するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-25T18:25:35Z) - Mamba-PTQ: Outlier Channels in Recurrent Large Language Models [49.1574468325115]
本研究では,マンバモデルが注目型LLMで観測された異常チャネルと同じパターンを示すことを示す。
本研究では,SSMの定量化が難しい理由は,トランスフォーマーベースLLMで見られるような,アクティベーションアウトレーヤによるものであることを示す。
論文 参考訳(メタデータ) (2024-07-17T08:21:06Z) - Induction Heads as an Essential Mechanism for Pattern Matching in In-context Learning [12.911829891263263]
誘導ヘッドの最小アブレーションでもICL性能は抽象的パターン認識タスクで最大32%低下することを示す。
NLPタスクの場合、このアブレーションはモデルがサンプルから恩恵を受ける能力を大幅に低下させ、ゼロショットプロンプトに近い数ショットのICLパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-07-09T16:29:21Z) - Quantifying Emergence in Large Language Models [31.608080868988825]
LLMの出現を推定するための定量化ソリューションを提案する。
分子動力学における創発性に着想を得て, ミクロ(トケン)レベルのエントロピー低減とミクロ(セマンティック)レベルのエントロピー低減を比較して, 出現の強さを定量化する。
本手法は,テキスト内学習(ICL)と自然文の両方で,一貫した振る舞いを示す。
論文 参考訳(メタデータ) (2024-05-21T09:12:20Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - On the Relation between Internal Language Model and Sequence Discriminative Training for Neural Transducers [52.88268942796418]
内部言語モデル(ILM)のサブトラクションは、RNN-Transducerの性能向上に広く応用されている。
列識別訓練は, 理論的, 経験的両面からILMサブトラクションと強く相関していることを示す。
論文 参考訳(メタデータ) (2023-09-25T13:35:28Z) - Layer-wise Feedback Propagation [53.00944147633484]
本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決に対するそれぞれの貢献に基づいて、個々のコネクションに報酬を割り当てる。
各種モデルやデータセットの勾配降下に匹敵する性能を達成できることの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Extreme Memorization via Scale of Initialization [72.78162454173803]
我々は,初期化の規模を変えることが,SGDによって誘導される暗黙の正規化に強く影響を与える実験装置を構築する。
一般化能力に影響を及ぼす範囲と方法が、使用したアクティベーションと損失関数に依存することがわかった。
均質なReLU活性化の場合、この挙動は損失関数に起因することが示される。
論文 参考訳(メタデータ) (2020-08-31T04:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。