論文の概要: CDXFormer: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
- arxiv url: http://arxiv.org/abs/2411.07863v2
- Date: Sat, 21 Dec 2024 03:10:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:25.219107
- Title: CDXFormer: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
- Title(参考訳): CDXFormer:長期記憶の拡張によるリモートセンシング変更検出の高速化
- Authors: Zhenkai Wu, Xiaowen Ma, Rongrong Lian, Kai Zheng, Wei Zhang,
- Abstract要約: 本稿では,強力なXLSTMベースの機能拡張層であるコアコンポーネントを備えたCDXFormerを提案する。
我々は,意味的精度の高い深層機能用にカスタマイズされたクロステンポラルグローバルパーセプトロンを組み込んだ,スケール特異的な特徴エンハンサー層を導入する。
また,グローバルな変化表現と空間応答を段階的に相互作用するクロススケール・インタラクティブ・フュージョンモジュールを提案する。
- 参考スコア(独自算出の注目度): 7.926250735066206
- License:
- Abstract: In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXFormer, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXFormer achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
- Abstract(参考訳): 複雑な場面や様々な状況において、空間的文脈を効果的に統合することは、変化を正確に識別するために重要である。
しかし、現在のRS-CD法は性能と効率のバランスが取れていない。
CNNはグローバルコンテキストを欠き、トランスフォーマーは計算コストが高く、MambasはCUDA依存と局所相関損失に直面している。
本稿では,線形計算複雑性,大域的文脈認識,強い解釈能力の利点を融合した,強力なXLSTMベースの機能拡張層であるコアコンポーネントを備えたCDXFormerを提案する。
具体的には、意味的精度の高い深い特徴にカスタマイズされたクロステンポラル・グローバル・パーセプトロンと、詳細に富んだ浅い特徴にカスタマイズされたクロステンポラル・スペース・リファイナを導入する。
さらに,グローバルな変化表現と空間応答を段階的に相互作用するクロススケール・インタラクティブ・フュージョンモジュールを提案する。
大規模な実験結果によると、CDXFormerは3つのベンチマークデータセットで最先端のパフォーマンスを実現し、効率と精度のバランスを保っている。
コードはhttps://github.com/xwmaxwma/rschange.comから入手できる。
関連論文リスト
- Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
ウィンドウベーストランスは超高解像度タスクにおいて優れた性能を示した。
畳み込みニューラルネットワークよりも計算複雑性と推論レイテンシが高い。
線形適応ミキサーネットワーク(LAMNet)という,畳み込みに基づくトランスフォーマーフレームワークを構築する。
論文 参考訳(メタデータ) (2024-09-26T07:24:09Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
本研究は,効率的な特徴集約のための複雑局所的注意機構を導入することで,自己注意機構の二次的複雑さに取り組む。
また,各チャネルの注目重量分布を適応的に調整するパラメータフリーチャネル温度適応機構を導入する。
我々は,PointMTが性能と精度の最適なバランスを維持しつつ,最先端手法に匹敵する性能を実現することを示す。
論文 参考訳(メタデータ) (2024-08-10T10:16:03Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - CSFNet: A Cosine Similarity Fusion Network for Real-Time RGB-X Semantic Segmentation of Driving Scenes [0.0]
マルチモーダルなセマンティックセグメンテーション手法は、高い計算複雑性と低い推論速度に悩まされる。
本稿では,リアルタイムRGB-XセマンティックセマンティックセグメンテーションモデルとしてCosine similarity Fusion Network (CSFNet)を提案する。
CSFNetは最先端の手法と競合する精度を持ち、速度に関しては最先端の手法である。
論文 参考訳(メタデータ) (2024-07-01T14:34:32Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic
Token Mixer for Visual Recognition [71.6546914957701]
本稿では,グローバルな情報と局所的な詳細を入力依存の方法で集約する軽量なDual Dynamic Token Mixer (D-Mixer)を提案する。
我々は、新しいハイブリッドCNN-TransformerビジョンバックボーンネットワークであるTransXNetを設計するために、基本的なビルディングブロックとしてD-Mixerを使用している。
ImageNet-1Kの画像分類タスクでは、TransXNet-TはSwing-Tを0.3%上回り、計算コストの半分以下である。
論文 参考訳(メタデータ) (2023-10-30T09:35:56Z) - WCCNet: Wavelet-integrated CNN with Crossmodal Rearranging Fusion for
Fast Multispectral Pedestrian Detection [16.43119521684829]
我々は、異なるスペクトルのリッチな特徴をより少ない計算量で差分抽出できる WCCNet という新しいフレームワークを提案する。
よく抽出された特徴に基づき、我々はクロスモーダル再配置核融合モジュール(CMRF)を精巧に設計する。
我々はKAISTおよびFLIRベンチマークの総合評価を行い、WCCNetは計算効率と競争精度で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-08-02T09:35:21Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
本稿では,リアルタイムセマンティックセグメンテーションのための効率的なデュアルレゾリューション変換器RTFormerを提案する。
CNNベースのモデルよりもパフォーマンスと効率のトレードオフが優れている。
主要なベンチマーク実験では,提案したRTFormerの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T16:03:53Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。