論文の概要: Classical Pre-optimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications
- arxiv url: http://arxiv.org/abs/2411.07920v1
- Date: Tue, 12 Nov 2024 16:52:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:17.676258
- Title: Classical Pre-optimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications
- Title(参考訳): ADAPT-VQEの古典的事前最適化アプローチ:高性能計算資源の可能性の最大化と化学応用の量子シミュレーション
- Authors: J. Wayne Mullinax, Panagiotis G. Anastasiou, Jeffrey Larson, Sophia E. Economou, Norm M. Tubman,
- Abstract要約: スパース波動関数回路ソルバ(SWCS)を用いたADAPT-VQEの実装と性能について報告する。
SWCSは計算コストと精度のバランスを調整できるため、分子電子構造計算へのADAPT-VQEの適用が拡張される。
ADAPT-VQE/SWCSで生成されるパラメータ化アンサッツを用いて量子シミュレーションを事前最適化することにより、従来の高性能コンピューティングのパワーを活用することを目指す。
- 参考スコア(独自算出の注目度): 0.6361348748202732
- License:
- Abstract: The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work we report the implementation and performance of ADAPT-VQE with our recently developed sparse wavefunction circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin-orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By pre-optimizing a quantum simulation with a parameterized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.
- Abstract(参考訳): ADAPT-VQEアルゴリズムは、基礎となるコスト関数の導関数に基づいてコンパクトなアンザッツを生成するための有望な方法であり、分子の電子エネルギーの正確な予測を生成する。
本稿では,52個のスピン軌道を持つ分子系の精度と効率の観点から,最近開発されたスパース波動関数回路ソルバ(SWCS)を用いたADAPT-VQEの実装と性能について報告する。
SWCSは計算コストと精度のバランスを調整でき、分子電子構造計算へのADAPT-VQEの適用をより大きな基底セットとより多くの量子ビットに拡張することができる。
SWCSのこのチューニング可能な特徴を用いて、最適化の計算コストを削減するためにADAPT-VQEの代替最適化手順を提案する。
ADAPT-VQE/SWCSで生成されるパラメータ化アンサッツで量子シミュレーションを事前最適化することにより、ノイズの多い中間スケールの量子ハードウェアで必要となる作業を最小限に抑えるために、古典的な高性能コンピューティングのパワーを活用することを目的としている。
関連論文リスト
- Quantum Approximate Optimization Algorithm and Quantum-enhanced Markov Chain Monte Carlo: A Hybrid Approach to Data Assimilation in 4DVAR [0.0]
4次元変分データ同化(4D VAR)における計算課題に取り組むための新しいハイブリッド量子古典的フレームワークを提案する。
提案手法である量子変分粒子フィルタ(QVPF)は,QAOAを用いて粒子提案を最適化し,QMCMCを用いて効率よく粒子重みを計算し,再サンプリングを行い,計算負荷を低減しながら収束を加速する。
ハイブリッドモデルは量子アルゴリズムを変分粒子フィルタに統合することで精度を高め、特に気候モデリング、宇宙天気予報、防衛への応用に適している。
論文 参考訳(メタデータ) (2024-10-04T18:37:35Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
量子コンピューティングは、量子化学計算を可能にするための有望な道を提供する。
最近の研究は、ノイズ中間量子(NISQ)デバイスのためのアルゴリズムの開発とスケーリングに向けられている。
論文 参考訳(メタデータ) (2024-08-20T18:00:01Z) - Towards Efficient Quantum Computation of Molecular Ground State Energies using Bayesian Optimization with Priors over Surface Topology [0.0]
変分量子固有解法(VQEs)は、現代の量子コンピュータにおける分子基底状態とエネルギーの計算における有望なアプローチである。
量子資源の少ないVQEを解くために,数ショットの回路観測を利用する標準的なベイズ最適化アルゴリズムの修正を提案する。
論文 参考訳(メタデータ) (2024-07-10T18:01:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
本稿では,NISQ(Noisy Intermediate-Scale Quantum)デバイス上でのチューニングについて述べる。
VQEのケーススタディにおいて、異なる最小値の効率と有効性について分析した。
これまでのほとんどの結果は量子VQE回路のチューニングに集中しているが、量子ノイズの存在下では、古典的な最小化ステップを慎重に選択して正しい結果を得る必要がある。
論文 参考訳(メタデータ) (2020-04-06T21:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。