Neural Corrective Machine Unranking
- URL: http://arxiv.org/abs/2411.08562v1
- Date: Wed, 13 Nov 2024 12:19:46 GMT
- Title: Neural Corrective Machine Unranking
- Authors: Jingrui Hou, Axel Finke, Georgina Cosma,
- Abstract summary: We formalise corrective unranking and propose a novel teacher-student framework, Corrective unRanking Distillation (CuRD)
CuRD facilitates forgetting by adjusting the (trained) neural IR model such that its output relevance scores of to-be-forgotten samples mimic those of low-ranking, non-retrievable samples.
Experiments with forget set sizes from 1 % and 20 % of the training dataset demonstrate that CuRD outperforms seven state-of-the-art baselines in terms of forgetting and correction.
- Score: 3.2340528215722553
- License:
- Abstract: Machine unlearning in neural information retrieval (IR) systems requires removing specific data whilst maintaining model performance. Applying existing machine unlearning methods to IR may compromise retrieval effectiveness or inadvertently expose unlearning actions due to the removal of particular items from the retrieved results presented to users. We formalise corrective unranking, which extends machine unlearning in (neural) IR context by integrating substitute documents to preserve ranking integrity, and propose a novel teacher-student framework, Corrective unRanking Distillation (CuRD), for this task. CuRD (1) facilitates forgetting by adjusting the (trained) neural IR model such that its output relevance scores of to-be-forgotten samples mimic those of low-ranking, non-retrievable samples; (2) enables correction by fine-tuning the relevance scores for the substitute samples to match those of corresponding to-be-forgotten samples closely; (3) seeks to preserve performance on samples that are not targeted for forgetting. We evaluate CuRD on four neural IR models (BERTcat, BERTdot, ColBERT, PARADE) using MS MARCO and TREC CAR datasets. Experiments with forget set sizes from 1 % and 20 % of the training dataset demonstrate that CuRD outperforms seven state-of-the-art baselines in terms of forgetting and correction while maintaining model retention and generalisation capabilities.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Goldfish: An Efficient Federated Unlearning Framework [3.956103498302838]
Goldfish is a new framework for machine unlearning algorithms.
It comprises four modules: basic model, loss function, optimization, and extension.
To address the challenge of low validity in existing machine unlearning algorithms, we propose a novel loss function.
arXiv Detail & Related papers (2024-04-04T03:29:41Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Machine Unlearning for Causal Inference [0.6621714555125157]
It is important to enable the model to forget some of its learning/captured information about a given user (machine unlearning)
This paper introduces the concept of machine unlearning for causal inference, particularly propensity score matching and treatment effect estimation.
The dataset used in the study is the Lalonde dataset, a widely used dataset for evaluating the effectiveness of job training programs.
arXiv Detail & Related papers (2023-08-24T17:27:01Z) - Generative Adversarial Networks Unlearning [13.342749941357152]
Machine unlearning has emerged as a solution to erase training data from trained machine learning models.
Research on Generative Adversarial Networks (GANs) is limited due to their unique architecture, including a generator and a discriminator.
We propose a cascaded unlearning approach for both item and class unlearning within GAN models, in which the unlearning and learning processes run in a cascaded manner.
arXiv Detail & Related papers (2023-08-19T02:21:21Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
We propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimize for the L2 metric without the need of generating pairs.
We evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures.
arXiv Detail & Related papers (2023-06-01T12:53:10Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - PROMISSING: Pruning Missing Values in Neural Networks [0.0]
We propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks.
Our experiments show that PROMISSING results in similar prediction performance compared to various imputation techniques.
arXiv Detail & Related papers (2022-06-03T15:37:27Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
We propose a new formalism of knowledge distillation for regression problems.
First, we propose a new loss function, teacher outlier loss rejection, which rejects outliers in training samples using teacher model predictions.
By considering the multi-task network, training of the feature extraction of student models becomes more effective.
arXiv Detail & Related papers (2020-02-28T08:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.