Quantum multi-output Gaussian Processes based Machine Learning for Line Parameter Estimation in Electrical Grids
- URL: http://arxiv.org/abs/2411.09123v1
- Date: Thu, 14 Nov 2024 01:44:39 GMT
- Title: Quantum multi-output Gaussian Processes based Machine Learning for Line Parameter Estimation in Electrical Grids
- Authors: Priyanka Arkalgud Ganeshamurthy, Kumar Ghosh, Corey O'Meara, Giorgio Cortiana, Jan Schiefelbein-Lach, Antonello Monti,
- Abstract summary: We develop a quantum version of multi-output Gaussian Process (QGP) by implementing a well-known quantum algorithm called HHL.
We showcase the application of QGP for a real-world problem to estimate line parameters of an electrical grid.
- Score: 0.0848210898747543
- License:
- Abstract: Gaussian process (GP) is a powerful modeling method with applications in machine learning for various engineering and non-engineering fields. Despite numerous benefits of modeling using GPs, the computational complexity associated with GPs demanding immense resources make their practical usage highly challenging. In this article, we develop a quantum version of multi-output Gaussian Process (QGP) by implementing a well-known quantum algorithm called HHL, to perform the Kernel matrix inversion within the Gaussian Process. To reduce the large circuit depth of HHL a circuit optimization technique called Approximate Quantum Compiling (AQC) has been implemented. We further showcase the application of QGP for a real-world problem to estimate line parameters of an electrical grid. Using AQC, up to 13-qubit HHL circuit has been implemented for a 32x32 kernel matrix inversion on IBM Quantum hardware for demonstrating QGP based line parameter estimation experimentally. Finally, we compare its performance against noise-less quantum simulators and classical computation results.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Quantum AI simulator using a hybrid CPU-FPGA approach [9.736685719039599]
We show that the quantum kernel estimation by our heterogeneous CPU-FPGA computing is 470 times faster than that by a conventional CPU implementation.
The co-design of our application-specific quantum kernel and its efficient FPGA implementation enabled us to perform one of the largest numerical simulations of a gate-based quantum kernel in terms of features.
arXiv Detail & Related papers (2022-06-20T06:45:29Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Matrix Product State Pre-Training for Quantum Machine Learning [0.1259953341639576]
Parametrised Quantum Circuits (PQCs) have been used as a basis for quantum chemistry and quantum optimization problems.
We introduce a circuit pre-training method based on matrix product state machine learning methods.
arXiv Detail & Related papers (2021-06-10T13:43:30Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.