論文の概要: Artificial Intelligence for Quantum Computing
- arxiv url: http://arxiv.org/abs/2411.09131v1
- Date: Thu, 14 Nov 2024 02:11:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:20.196102
- Title: Artificial Intelligence for Quantum Computing
- Title(参考訳): 量子コンピューティングのための人工知能
- Authors: Yuri Alexeev, Marwa H. Farag, Taylor L. Patti, Mark E. Wolf, Natalia Ares, Alán Aspuru-Guzik, Simon C. Benjamin, Zhenyu Cai, Zohim Chandani, Federico Fedele, Nicholas Harrigan, Jin-Sung Kim, Elica Kyoseva, Justin G. Lietz, Tom Lubowe, Alexander McCaskey, Roger G. Melko, Kouhei Nakaji, Alberto Peruzzo, Sam Stanwyck, Norm M. Tubman, Hanrui Wang, Timothy Costa,
- Abstract要約: 量子コンピューティングは、AIのデータ駆動学習機能の主要な候補である。
AIからQCにリードする技術を導入するには、おそらくコンピュータ科学の最も先進的で難解な領域の2つから専門知識を引き出す必要がある。
本稿では、最先端のAI技術が、有用なQCを開発するために必要なハードウェアとソフトウェアスタック間の課題をすでに進めている方法についてレビューする。
- 参考スコア(独自算出の注目度): 30.639337493477242
- License:
- Abstract: Artificial intelligence (AI) advancements over the past few years have had an unprecedented and revolutionary impact across everyday application areas. Its significance also extends to technical challenges within science and engineering, including the nascent field of quantum computing (QC). The counterintuitive nature and high-dimensional mathematics of QC make it a prime candidate for AI's data-driven learning capabilities, and in fact, many of QC's biggest scaling challenges may ultimately rest on developments in AI. However, bringing leading techniques from AI to QC requires drawing on disparate expertise from arguably two of the most advanced and esoteric areas of computer science. Here we aim to encourage this cross-pollination by reviewing how state-of-the-art AI techniques are already advancing challenges across the hardware and software stack needed to develop useful QC - from device design to applications. We then close by examining its future opportunities and obstacles in this space.
- Abstract(参考訳): 過去数年間の人工知能(AI)の進歩は、日常のアプリケーション領域で前例のない、革命的な影響を受けてきた。
その重要性は、量子コンピューティング(QC)の誕生した分野を含む、科学と工学における技術的な課題にも及んでいる。
QCの直感的な性質と高次元数学は、AIのデータ駆動学習能力の主要な候補となり、実際、QCの最大のスケーリング課題の多くは、最終的にAIの開発にかかっている。
しかし、AIからQCに先導する技術を導入するには、コンピュータ科学の最も先進的で難解な領域の2つから、さまざまな専門知識を引き出す必要がある。
ここでは、デバイス設計からアプリケーションまで、有用なQCを開発するために必要なハードウェアとソフトウェアスタック間の課題を、最先端のAI技術がすでにどのように進めているかをレビューすることによって、このクロスポーリネーションを促進することを目的としています。
そして、この分野の将来的な機会と障害を調べて、締めくくります。
関連論文リスト
- Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
提示されたシステムアーキテクチャは、動的な知識グラフベースのWebAssembly Twinsの概念に基づいている。
結果として得られるシステムは、エンドユーザによる完全な透明性とコントロール性を備えた、高度な自律能力を持つことになる。
論文 参考訳(メタデータ) (2024-10-28T13:03:09Z) - Quantum Artificial Intelligence: A Brief Survey [0.3495246564946556]
量子人工知能(QAI)は、量子コンピューティングとAIの交差点である。
これまでにQAIで達成されたことを概観するとともに、今後の研究に向けたオープンな質問をいくつか紹介する。
論文 参考訳(メタデータ) (2024-08-20T10:55:17Z) - Quantum Computing and Visualization: A Disruptive Technological Change
Ahead [0.753179862869346]
この記事では、量子コンピューティング(QC)の理解において、可視化がどのように役立つか、という考え方を探求する。
QCは、古典的コンピューティングの成長限界を克服するための、有望な道として浮上している。
可視化は、重畳状態における単一量子ビットの量子状態の表現と、絡み合った状態における多重量子ビットの表現を提供することによって、QCにおいて重要な役割を果たしてきた。
論文 参考訳(メタデータ) (2023-10-07T22:57:04Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - A new solution and concrete implementation steps for Artificial General
Intelligence [4.320142895840622]
介護、家計、農業生産、自動車運転、試行錯誤など、実際の環境と対話する必要がある分野は高価である。
本稿では,大規模モデルの技術的経路の限界を解析し,これらの制限に対処し,解決策を提案する。
論文 参考訳(メタデータ) (2023-08-12T13:31:02Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
デジタルハードウェアは、最適化、ディープラーニング、微分方程式に関する問題の解決に本質的に制約されていることを示す。
対照的に、Blum-Shub-Smale マシンのようなアナログコンピューティングモデルは、これらの制限を克服する可能性を示している。
論文 参考訳(メタデータ) (2023-07-03T19:10:45Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
インテリジェントなセンシング、自動化、エッジコンピューティングアプリケーションは、AIチップの市場ドライバとなっている。
AIチップソリューションの一般化、パフォーマンス、堅牢性、スケーラビリティは、人間のような知能能力と比較される。
論文 参考訳(メタデータ) (2020-12-08T02:36:04Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。