論文の概要: Low-Latency Privacy-Preserving Deep Learning Design via Secure MPC
- arxiv url: http://arxiv.org/abs/2407.18982v1
- Date: Wed, 24 Jul 2024 07:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:22:03.374556
- Title: Low-Latency Privacy-Preserving Deep Learning Design via Secure MPC
- Title(参考訳): セキュアMPCによる低レイテンシプライバシ保護深層学習設計
- Authors: Ke Lin, Yasir Glani, Ping Luo,
- Abstract要約: セキュアなマルチパーティ計算(MPC)は、プライベート情報をリークすることなく、複数のパーティ間のプライバシ保護計算を容易にする。
本研究は、MPCプロトコルの実行中に不要な通信ラウンドを減らす、低レイテンシな秘密共有ベースのMPC設計を提案する。
- 参考スコア(独自算出の注目度): 31.35072624488929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Secure multi-party computation (MPC) facilitates privacy-preserving computation between multiple parties without leaking private information. While most secure deep learning techniques utilize MPC operations to achieve feasible privacy-preserving machine learning on downstream tasks, the overhead of the computation and communication still hampers their practical application. This work proposes a low-latency secret-sharing-based MPC design that reduces unnecessary communication rounds during the execution of MPC protocols. We also present a method for improving the computation of commonly used nonlinear functions in deep learning by integrating multivariate multiplication and coalescing different packets into one to maximize network utilization. Our experimental results indicate that our method is effective in a variety of settings, with a speedup in communication latency of $10\sim20\%$.
- Abstract(参考訳): セキュアなマルチパーティ計算(MPC)は、プライベート情報をリークすることなく、複数のパーティ間のプライバシ保護計算を容易にする。
ほとんどのセキュアなディープラーニング技術は、MPC操作を利用して、下流タスクで実現可能なプライバシ保護機械学習を実現するが、計算と通信のオーバーヘッドは依然として現実的な応用を妨げている。
本研究は、MPCプロトコルの実行中に不要な通信ラウンドを減らす、低レイテンシな秘密共有ベースのMPC設計を提案する。
また、多変量乗算と異なるパケットを1つに合体させてネットワーク利用を最大化することにより、ディープラーニングにおける一般的な非線形関数の計算を改善する方法を提案する。
実験結果から,本手法は通信遅延を10\sim20\%$で高速化し,様々な設定で有効であることが示唆された。
関連論文リスト
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification [50.28867343337997]
本研究は,TinyMLを用いた無線画像分類のためのセマンティック・コミュニケーション・フレームワークを提案する。
我々は、プライバシ保護を確保しつつ、エンドユーザーによって実行される計算を制限するために分割学習を利用する。
メタ学習は、データ可用性の懸念を克服し、同様のトレーニングされたタスクを利用することで、トレーニングを高速化する。
論文 参考訳(メタデータ) (2024-09-03T05:56:55Z) - Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
我々は、潜在マルコフ決定過程(LMDP)の計算的および統計的側面について研究する。
このモデルでは、学習者は、未知のMDPの混合から各エポックの開始時に描画されたMDPと相互作用する。
論文 参考訳(メタデータ) (2024-06-12T06:41:47Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
フェデレートラーニングスキームにおけるプライバシを保証するためのソリューションを提案する。
本提案は,Secret Sharing設定に適応したBerrut Approximated Coded Computingに基づく。
論文 参考訳(メタデータ) (2024-05-02T20:03:13Z) - On Building Myopic MPC Policies using Supervised Learning [0.0]
本稿では,教師付き学習を用いて最適値関数をオフラインで学習する代替戦略について考察する。
これは、非常に短い予測地平線を持つミオピックMPCのコスト・ツー・ゴー関数として使用できる。
論文 参考訳(メタデータ) (2024-01-23T08:08:09Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - MPC-Pipe: an Efficient Pipeline Scheme for Secure Multi-party Machine Learning Inference [5.7203077366666015]
重なり合う計算と通信の手順を慎重に整理することは可能であることを示す。
MPC-Pipeは機械学習ワークロードのトレーニングと推論の両方に効率的なMPCシステムである。
論文 参考訳(メタデータ) (2022-09-27T19:16:26Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
この論文は、2、3、4パーティで効率的なMPCフレームワークを設計することに焦点を当て、少なくとも1つの汚職とリング構造をサポートする。
それぞれのフレームワークに対して2つのバリエーションを提案し、一方は実行時間を最小化し、もう一方は金銭的コストに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-26T09:25:32Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
本稿では,歩行ロボットの複数の歩行を模倣する単一ポリシーを学習する学習アルゴリズムを提案する。
モデル予測制御によって導かれる模擬学習のアプローチであるMPC-Netを使用し、拡張します。
ハードウェアに対する我々のアプローチを検証し、学習したポリシーが教師に取って代わって複数の歩留まりを制御できることを示します。
論文 参考訳(メタデータ) (2021-03-26T08:48:53Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。