G-computation for increasing performances of clinical trials with individual randomization and binary response
- URL: http://arxiv.org/abs/2411.10089v1
- Date: Fri, 15 Nov 2024 10:18:38 GMT
- Title: G-computation for increasing performances of clinical trials with individual randomization and binary response
- Authors: Joe de Keizer, Rémi Lenain, Raphaël Porcher, Sarah Zoha, Arthur Chatton, Yohann Foucher,
- Abstract summary: In a clinical trial, the random allocation aims to balance prognostic factors between arms, preventing true confounders.
Adjusting on prognostic factors is therefore recommended, especially because the related increase of the power.
In this paper, we hypothesized that G-computation associated with machine learning could be a suitable method for randomized clinical trials even with small sample sizes.
- Score: 0.43541492802373877
- License:
- Abstract: In a clinical trial, the random allocation aims to balance prognostic factors between arms, preventing true confounders. However, residual differences due to chance may introduce near-confounders. Adjusting on prognostic factors is therefore recommended, especially because the related increase of the power. In this paper, we hypothesized that G-computation associated with machine learning could be a suitable method for randomized clinical trials even with small sample sizes. It allows for flexible estimation of the outcome model, even when the covariates' relationships with outcomes are complex. Through simulations, penalized regressions (Lasso, Elasticnet) and algorithm-based methods (neural network, support vector machine, super learner) were compared. Penalized regressions reduced variance but may introduce a slight increase in bias. The associated reductions in sample size ranged from 17\% to 54\%. In contrast, algorithm-based methods, while effective for larger and more complex data structures, underestimated the standard deviation, especially with small sample sizes. In conclusion, G-computation with penalized models, particularly Elasticnet with splines when appropriate, represents a relevant approach for increasing the power of RCTs and accounting for potential near-confounders.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Prognostic Covariate Adjustment for Logistic Regression in Randomized
Controlled Trials [1.5020330976600735]
We show that prognostic score adjustment can increase the power of the Wald test for the conditional odds ratio under a fixed sample size.
We utilize g-computation to expand the scope of prognostic score adjustment to inferences on the marginal risk difference, relative risk, and odds ratio estimands.
arXiv Detail & Related papers (2024-02-29T06:53:16Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Learning Likelihood Ratios with Neural Network Classifiers [0.12277343096128711]
approximations of the likelihood ratio may be computed using clever parametrizations of neural network-based classifiers.
We present a series of empirical studies detailing the performance of several common loss functionals and parametrizations of the classifier output.
arXiv Detail & Related papers (2023-05-17T18:11:38Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Two-Stage TMLE to Reduce Bias and Improve Efficiency in Cluster
Randomized Trials [0.0]
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals, and measure outcomes on individuals in those groups.
Findings are often missing for some individuals within clusters.
CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms.
arXiv Detail & Related papers (2021-06-29T21:47:30Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Fast marginal likelihood estimation of penalties for group-adaptive
elastic net [0.0]
Group-adaptive elastic net penalisation learns from co-data to improve prediction.
We present a fast method for marginal likelihood estimation of group-adaptive elastic net penalties for generalised linear models.
We demonstrate the method in a model-based simulation study and an application to cancer genomics.
arXiv Detail & Related papers (2021-01-11T13:30:24Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.