A unifying framework for generalised Bayesian online learning in non-stationary environments
- URL: http://arxiv.org/abs/2411.10153v3
- Date: Wed, 12 Mar 2025 10:05:37 GMT
- Title: A unifying framework for generalised Bayesian online learning in non-stationary environments
- Authors: Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Alexander Y. Shestopaloff, Kevin Murphy,
- Abstract summary: We call the framework BONE, which stands for generalised (B)ayesian (O)nline learning in (N)on-stationary (E)nvironments.<n>BONE provides a common structure to tackle a variety of problems, including online continual learning, prequential forecasting, and contextual bandits.
- Score: 44.30046484614902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a unifying framework for methods that perform probabilistic online learning in non-stationary environments. We call the framework BONE, which stands for generalised (B)ayesian (O)nline learning in (N)on-stationary (E)nvironments. BONE provides a common structure to tackle a variety of problems, including online continual learning, prequential forecasting, and contextual bandits. The framework requires specifying three modelling choices: (i) a model for measurements (e.g., a neural network), (ii) an auxiliary process to model non-stationarity (e.g., the time since the last changepoint), and (iii) a conditional prior over model parameters (e.g., a multivariate Gaussian). The framework also requires two algorithmic choices, which we use to carry out approximate inference under this framework: (i) an algorithm to estimate beliefs (posterior distribution) about the model parameters given the auxiliary variable, and (ii) an algorithm to estimate beliefs about the auxiliary variable. We show how the modularity of our framework allows for many existing methods to be reinterpreted as instances of BONE, and it allows us to propose new methods. We compare experimentally existing methods with our proposed new method on several datasets, providing insights into the situations that make each method more suitable for a specific task. We provide a Jax open source library to facilitate the adoption of this framework.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Inference-Time Alignment in Diffusion Models with Reward-Guided Generation: Tutorial and Review [59.856222854472605]
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models.
practical applications in fields such as biology often require sample generation that maximizes specific metrics.
We discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, and (3) connections between inference-time algorithms in language models and diffusion models.
arXiv Detail & Related papers (2025-01-16T17:37:35Z) - A Survey of Low-shot Vision-Language Model Adaptation via Representer Theorem [38.84662767814454]
Key challenge to address under the condition of limited training data is how to fine-tune pre-trained vision-language models in a parameter-efficient manner.
This paper proposes a unified computational framework to integrate existing methods together, identify their nature and support in-depth comparison.
As a demonstration, we extend existing methods by modeling inter-class correlation between representers in reproducing kernel Hilbert space (RKHS)
arXiv Detail & Related papers (2024-10-15T15:22:30Z) - Scalable Structure Learning for Sparse Context-Specific Systems [0.0]
We present an algorithm for learning context-specific models that scales to hundreds of variables.
Our method is shown to perform well on synthetic data and real world examples.
arXiv Detail & Related papers (2024-02-12T16:28:52Z) - Multivariate Probabilistic CRPS Learning with an Application to
Day-Ahead Electricity Prices [0.0]
This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts.
It considers dependencies between quantiles and marginals through a smoothing procedure that allows for online learning.
A fast C++ implementation of the proposed algorithm is provided in the open-source R-Package profoc on CRAN.
arXiv Detail & Related papers (2023-03-17T14:47:55Z) - Federated Variational Inference Methods for Structured Latent Variable
Models [1.0312968200748118]
Federated learning methods enable model training across distributed data sources without data leaving their original locations.
We present a general and elegant solution based on structured variational inference, widely used in Bayesian machine learning.
We also provide a communication-efficient variant analogous to the canonical FedAvg algorithm.
arXiv Detail & Related papers (2023-02-07T08:35:04Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Deep Conditional Transformation Models [0.0]
Learning the cumulative distribution function (CDF) of an outcome variable conditional on a set of features remains challenging.
Conditional transformation models provide a semi-parametric approach that allows to model a large class of conditional CDFs.
We propose a novel network architecture, provide details on different model definitions and derive suitable constraints.
arXiv Detail & Related papers (2020-10-15T16:25:45Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Multi-view Orthonormalized Partial Least Squares: Regularizations and
Deep Extensions [8.846165479467324]
We establish a family of subspace-based learning method for multi-view learning using the least squares as the fundamental basis.
We propose a unified multi-view learning framework to learn a classifier over a common latent space shared by all views.
arXiv Detail & Related papers (2020-07-09T19:00:39Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.